Data Requirement

EPA 79.61 and OPPTS 870.3700 and OECD 414

STUDY NO. 05-4287 SPONSOR STUDY NO. 211-DIPE-DEV

GASOLINE DIPE VAPOR CONDENSATE:

EMBRYO-FETAL TOXICITY STUDY IN RATS BY

INHALATION EXPOSURE

Final Report

Author: Gary M. Hoffman, B.A., D.A.B.T.

Performed by: Huntingdon Life Sciences (HLS) 100 Mettlers Road East Millstone, New Jersey 08875-2360

- Submitted to: American Petroleum Institute (API) 1220 L Street, Northwest Washington, D.C. 20005-4070
 - Attn: Thomas M. Gray, M.S., D.A.B.T.

Date: 8 November 2012

Page 1 of 219

Huntingdon Life Sciences	05-4287	Page 2
	211-DIPE-DEV	Final Report

STATEMENT OF COMPLIANCE

This study was conducted in accordance with US EPA 79.60, CFR Vol. 59, No. 122, 27 June 1994. This study was performed according to protocol and Huntingdon Life Sciences' Standard Operating Procedures.

It was the Sponsor's responsibility to maintain the method of synthesis, fabrication, or derivation of the test fuel, and this was not completed at the time of the study conduct but has been completed since and is on file with the Sponsor. In addition, the Sponsor conducted a non-GLP purity analysis.

BUN 2017

Date

Gary M. Hoffman, B.A., D.A.B.T. Study Director

Thomas M. Gray, M.S., D.A.B.T. Sponsor Representative

12

Date

Huntingdon Life Sciences

05-4287 211-DIPE-DEV Page 3 Final Report

SIGNATURE PAGE

SCIENTISTS

The following Scientist was responsible for the overall conduct of this study. Departmental supervisory personnel are listed on the personnel page of this report (Appendix Q).

Broilor

Gary M. Hoffman, B.A., D.A.B.T. Study Director

Date

SCIENTIFIC REVIEW

The following Scientist has reviewed and approved this report:

Robert M. Parker, Ph.D., D.A.B.T. Director, Developmental and Reproductive Toxicology

SNOU ZUIZ

Date

05-4287 211-DIPE-DEV

QUALITY ASSURANCE STATEMENT

Listed below are the dates that this study was inspected by the Quality Assurance Unit of Huntingdon Life Sciences, East Millstone, New Jersey, and the dates that findings were reported to the Study Director and Management.

Type of Inspection	Date(s) of Inspection	Reported to Study Director and Management
GLP Protocol Review	21-25 Apr 05	25 Apr 05
Exposure Monitoring and Equipment Records	8 Aug 05	11 Aug 05
Formulation Chemistry: Inhalation Dose Analysis	16 Aug 05	16 Aug 05
Terminal Necropsy	22 Aug 05	23 Aug 05
Fetal Soft Tissue Evaluations and Training Records	17 Oct 05	21 Oct 05
Exposure Data and Report	19-20 Dec 05	20 Dec 05
Final Report and Study Data	14 Dec 05- 04-Jan-06	06-Jan-06
Formulation Chemistry Exposure Data and Report	19-20 Dec 05	28 Feb 06
Protocol Amendments 1 and 2	12 Jan 06	12 Jan 06
Pathology Associates Facility Inspection	13 Jul 06	18 Oct 06
Protocol Amendment 3	10 Nov 08	10 Nov 08
Protocol and Draft Protocol Amendment 4 ^a	03 May 11	05 May 11
Final Protocol Amendment 4 ^a	25 May 11	25 May 11
Protocol Amendment 4	01 Dec 11	01 Dec 11
Final Report Review	22-23 Oct 12	23 Oct 12
Protocol Amendment 5	07 Nov 12	07 Nov 12
Protocol Amendment 5 ^a	08 Nov 12	08 Nov 12
Fren Janno	re	8 Nov 12
Fran Jannone, B.A., RQ Quality Assurance Group		Date

^aAudits performed by Huntingdon Life Sciences-UK Quality Assurance and reported to Principal Investigator and Management on the date of inspection and Study Director and Management on the dates indicated above.

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS VIA INHALATION EXPOSURES

SUMMARY

This study was designed to assess the potential maternal and/or developmental toxicity of Gasoline DIPE Vapor Condensate in the pregnant rat when administered by whole-body inhalation exposure. The study design permitted evaluation of maternal toxicity as revealed by clinical, body weight and food consumption changes and by gross necropsy findings, and evaluation of the developing conceptus, including death, structural abnormalities, or altered growth. This particular study is a near replicate of a previous study conducted by ExxonMobil Biomedical Sciences, Inc. (EMBSI Study Number 171734). The previous study was incomplete due to technical errors made in evaluating the fetuses. The Sponsor needed to repeat the previous study to satisfy the Environmental Protection Agency's Alternative Tier 2 Testing Requirements under Sections 211(b) (2) of the Clean Air Act.

The test substance was administered once daily as a vapor to pregnant Sprague Dawley CD[®] female rats (24/group) at target concentrations of 2000, 10000 and 20000 mg/m³ for 6 hours/day, 7 days per week for Gestation Days (GD) 5-20. In addition, a control group (24/sex) received nitrogen enriched air only while in chamber. Exposure levels were determined 4 times per chamber per day. Particle size distribution measurements were also made once per chamber per week. The following parameters were evaluated: viability, clinical observations, body weights and feed consumption. A cesarean section was performed on GD 21. The animals were subjected to a macroscopic postmortem evaluation and corpora lutea/implantation data were recorded and the gravid uterus was weighed. The fetuses were examined for externally visible abnormalities and weighed. Approximately one-half of the fetuses (alternating fetuses) in each litter were examined for soft-tissue abnormalities using a microdissection procedure. The other half of the fetuses were then stained with Alizarin Red S and examined for skeletal abnormalities and ossification variations.

The overall mean (\pm standard deviation) analytical exposure concentrations for the control and the respective exposure groups were as follows: 0 ± 0 , 1982 \pm 93, 10072 \pm 546, 19776 \pm 961 mg/m³. The exposure regimen resulted in only transient reductions in maternal weight gain (approximately 12-25% reduced from Control at GD 11-14 interval, partly resolving by GD 21) and feed consumption (up to approximately 10%) during the exposure period. These changes were negligible at 2000 mg/m³ and most noticeable at 20000 mg/m³. It was considered that a no-observed-adverse-effect level (NOAEL) for maternal effects was evident at 2000 mg/m³.There was no effect of the exposures at any level on pregnancy outcome, in terms of pre- or post-implantation loss, fetal weight or the incidence of fetal abnormalities and variants. A NOAEL for embryo-fetal effects was therefore established at 2000 mg/m³.

TABLE OF CONTENTS

COV	ER PAC	JE	1
STA	TEMEN	T OF COMPLIANCE	2
		E PAGE	
QUA	LITY A	SSURANCE STATEMENT	4
SUM	IMARY		5
TAB	LE OF C	CONTENTS	6
1.	INTR	ODUCTION	8
2.	MAT	ERIALS AND METHODS	
	2.1.	Study Management	8
	2.2.	Study Dates	
	2.3.	Experimental Outline	
	2.4.	Justifications	
	2.5.	Test Substance	11
	2.6.	Test Animals	13
	2.7.	Animal Assignment	14
	2.8.	Animal Identification	14
	2.9.	Veterinary Care	14
	2.10.	Animal Husbandry During Non-Exposure Periods	15
	2.11.	Test Substance Administration and Chamber Operation	17
	2.12.	Experimental Evaluations	17
	2.13.	Postmortem Evaluations	18
	2.14.	Fetal Evaluations	19
	2.15.	Statistical Analysis	20
	2.16.	Data Storage	21
	2.17.	Regulatory References	21
	2.18.	Protocol Deviations	22
3.	RESI	JLTS AND DISCUSSION	
	3.1.	Test Substance Analysis	
	3.2.	Chamber Monitoring	
	3.3.	Maternal Data	
	3.4.	Fetal Data	
4.	CON	CLUSIONS	20
4.	CON		20
REF	ERENCI	ES	29
CAL	CULAT	IONS	

FIGURES

1.	Mean Gestation Body Weights	.32
2.	Mean Gestation Feed Consumption	.33

TABLES

Summary of Survival and Pregnancy	34
Summary of Clinical Observations During Gestation	35
Summary of Gestation Body Weights (grams)	36
Summary of Gestation Body Weight Gain (grams)	37
Summary of Gestation Feed Consumption (grams/kg/day)	38
Summary of Maternal Necropsy Observations	39
Summary of Cesarean Section Data	40
Summary of Gravid Uterine Weight and Net Body Weight Change (grams)	43
Summary of Fetal Observations	44
	Summary of Clinical Observations During Gestation Summary of Gestation Body Weights (grams) Summary of Gestation Body Weight Gain (grams) Summary of Gestation Feed Consumption (grams/kg/day) Summary of Maternal Necropsy Observations Summary of Cesarean Section Data Summary of Gravid Uterine Weight and Net Body Weight Change (grams)

APPENDICES

А.	Analytical Report	47
B.	Inhalation Report	62
C.	Individual Animal Termination History	85
D.	Individual Clinical Observations During Gestation	89
E.	Individual Gestation Body Weights (grams)	101
G.	Individual Gestation Feed Consumption (grams/kg/day)	109
H.	Individual Maternal Necropsy Observations	113
I.	Individual Female Reproduction Data and Mean Fetal Weights	121
J.	Individual Gravid Uterine Weight and Net Body Weight Change (grams)	125
K.	Individual Fetal Body Weights	129
L.	Individual Fetal External, Visceral and Skeletal Observations	133
M.	Statistical Analysis Report	146
N.	Certificates of Analysis – (Feed, Water and Bedding)	164
О.	Protocol and Protocol Amendments	178
P.	Historical Control Data	
Q.	Testing Facility Personnel	218
R.	Report Amendments	219

Huntingdon Life Sciences	05-4287	Page 8	
	211-DIPE-DEV	Final Report	

1. INTRODUCTION

The study was designed to assess the potential maternal and/or developmental toxicity of Gasoline DIPE (di-isopropyl ether) Vapor Condensate in the pregnant rat when administered by whole-body inhalation exposure. The study design permitted evaluation of maternal toxicity as revealed by clinical, body weight and food consumption changes and by gross necropsy findings, and evaluation of the developing conceptus, including death, structural abnormalities, or altered growth.

This particular study is a near replicate of a previous study conducted by ExxonMobil Biomedical Sciences, Inc. (EMBSI Study Number 171734). The previous study was incomplete due to technical errors made in evaluating the male reproductive system of the fetuses. The Sponsor needed to repeat the previous study to satisfy the Environmental Protection Agency's Alternative Tier 2 Testing Requirements under Sections 211(b) (2) of the Clean Air Act. The potential impact of the test substance on the fetal male reproductive system must still be evaluated within the context of the treatment requirements of those proscribed under the 211(b) Alternative Tier 2 Testing Requirements.

2. MATERIALS AND METHODS

2.1. STUDY MANAGEMENT

2.1.1. SPONSOR

American Petroleum Institute (API) 1220 L Street, Northwest Washington, D.C. 20005-4070

2.1.2. SPONSOR REPRESENTATIVE

Thomas M. Gray, M.S., D.A.B.T.

2.1.3. TESTING FACILITY

Huntingdon Life Sciences (HLS) 100 Mettlers Road East Millstone, New Jersey 08875-2360

2.1.4. STUDY DIRECTOR¹

Keith P. Hazelden, BSc, CBiol, MIBiol, Eurotox Registered Toxicologist

Gary M. Hoffman, B.A., D.A.B.T.

2.1.5. PRINCIPAL INVESTIGATOR – SKELETAL ASSESSMENTS

Michael Mercieca, M.S. Pathology Associates International (PAI)

2.1.6. PRINCIPAL INVESTIGATOR – STATISTICS

Gareth D. Thomas, B.Sc. (Hons). Huntingdon Life Sciences, UK

2.2. STUDY DATES

2.2.1. STUDY INITIATION

3 August 2005 (Date Study Director signed the Protocol)

2.2.2. DATE OF ANIMAL RECEIPT

4 August 2005 (GD 0, 1, 2 or 3)

2.2.3. EXPOSURE INITIATION

6 August 2005 (Experimental Start Date - First GD 5)

2.2.4. EXPOSURE TERMINATIONS

24 August 2005 (Last GD 20)

2.2.5. TERMINAL SACRIFICE

22-25 August 2005 (GD 21)

¹Keith Hazeldon was responsible for the conduct of the study and submission of the draft report; however he is no longer employed with Huntingdon Life Sciences. Gary Hoffman assumes responsibility for finalization of the study report.

2.2.6. EXPERIMENTAL TERMINATION

01 December 2005 (Date of last data collection)

2.2.7. STUDY COMPLETION

8 November 2012 (Date Study Director signed the Final Report)

		E	Tuestan	Number of Animals				
Group	Group Designation	Exposure Levels (mg/m3) ^a		Time-Mated	Euthanized Gestation	-	tal Evaluatio Fetuses/Litte	
		(ing/in3)	Days	Females	Day 21	External	Soft Tissue	Skeletal
1	Control	0 (air only)	5-20	24	All	All	~1/2	~1/2
2	Low	2000	5-20	24	All	All	~1/2	~1/2
3	Mid	10000	5-20	24	All	All	~1/2	~1/2
4	High	20000	5-20	24	All	All	~1/2	~1/2

2.3. EXPERIMENTAL OUTLINE

^aExposures were 6 hours per day for 7 consecutive days per week, for gestation days (GD) 5-20. Exposure levels are expressed as mg/m^3 of test substance. The exposures were conducted by whole-body exposure. Control animals were exposed to air enriched with nitrogen only, using the same treatment regimen as the treated groups.

The first day of gestation (GD 0 = day of detection of positive sign of mating) was defined as Day 0 of the study for each animal.

2.4. JUSTIFICATIONS

2.4.1. ROUTE, DURATION AND FREQUENCY OF ADMINISTRATION

The inhalation route was used for the EMBSI study and is one of the potential routes of human exposure to this test substance. The duration and frequency of the exposures were the same as for the EMBSI study, and as recommended in the relevant EPA and OECD test guidelines, ensuring adequate exposure of postimplantation embryo-fetal development.

2.4.2. EXPOSURE LEVEL SELECTION

The exposure levels were the same as those used in the EMBSI study, and as prescribed by the Sponsor based on the lower explosive limit (LEL) of the test substance (the low, intermediate

and high exposure levels were approximately 5, 25, and 50% of the LEL).

2.4.3. TEST ANIMAL SELECTION

The rat was used for the EMBSI study and is an accepted surrogate for humans in the detection of embryo-fetal toxicity. It is the rodent species that is recommended by the relevant EPA and OECD test guidelines. Historical control data are also available with this strain of rat for comparative evaluation, if necessary.

2.4.4. NUMBER OF ANIMALS

The number of animals in this study was considered the minimum necessary to allow for meaningful interpretation of the data as required by the OECD and EPA test guidelines. Some of the endpoints of principal interest (eg embryo-fetal death, fetal malformations) are low-frequency events and a group size of ~20 litters tends to provide the necessary degree of consistency between studies. In the expectation of pregnancy rates of 80-100%, the group size of 24 mated female rats was considered appropriate for this study, to provide a sufficient number of litters for evaluation in each group. Also, the number of animals in each group was comparable to the number in the EMBSI study (25/group).

2.5. TEST SUBSTANCE

Gasoline DIPE (di-isopropyl ether) Vapor Condensate

2.5.1. TEST SUBSTANCE CATEGORY

Gasoline product

2.5.2. SUPPLIER

ChevronTexaco Research and Technology Company 100 Chevron Way Richmond, CA 94802

2.5.3. LOT NUMBER

API 01-06

2.5.4. **PURITY**

100% Gasoline DIPE Vapor Condensate

2.5.5. DESCRIPTION

Colorless liquid

2.5.6. DATES RECEIVED

7 December 2001 05 August 2002

2.5.7. EXPIRATION DATE

Not available, stable per MSDS.

2.5.8. ANALYSIS

Prior to use in this study, the identity, strength, composition, stability and method of synthesis, fabrication and/or derivation of each batch of the test substance was documented and is maintained by the Sponsor. In addition, the Sponsor conducted a non-GLP purity analysis and the Testing Facility conducted a GLP stability analysis of the test substance by GC prior to the start of this study.

2.5.9. STORAGE

Room temperature (ambient) in an outside solvent shed, except when being used in the inhalation laboratory.

2.5.10. DISPENSING

The test substance was received from ChevronTexaco Research and Technology Company in 100-gallon cylinders. Since only 5-gallon cylinders were practical to be used for exposure operations, the test substance was dispensed, as needed, at the Testing Facility from the 100 gallon cylinders into 5-gallon cylinders using nitrogen pressurization.

2.5.11. ARCHIVAL SAMPLE

An archival sample of the test substance was taken and is stored in the Archives of the Testing Facility under conditions specified for test article storage. Since multiple studies were conducted with the same test substance, a common archival sample was taken and appropriately labeled.

2.5.12. DISPOSITION

The unused portion of the test substance was returned to the Sponsor's designee following completion of the study. Empty test substance containers were returned to the Sponsor's designee on an as-needed basis. The Sponsor was responsible for tracking their disposition.

2.6. TEST ANIMALS

2.6.1. SPECIES

Albino Rats (Outbred) VAF/Plus[®] Sprague-Dawley Derived (CD[®]) Crl:CD[®] (SD) IGS BR

2.6.2. SUPPLIER

Charles River Laboratories Raleigh, NC27610

2.6.3. NUMBER OF ANIMALS

Ordered and Received: 100 time-mated females

Placed on test: 96 females

2.6.4. AGE AT RECEIPT

Approximately 10-12 weeks

2.6.5. AGE AT INITIATION OF EXPOSURES

Approximately 10-12 weeks

2.6.6. WEIGHT AT INITIATION OF EXPOSURES (GRAMS)

	Mean	Range
Females:	244	216-280

Individual weights of animals placed on test were within $\pm 20\%$ of the mean weight.

2.6.7. ACCLIMATION PERIOD

Animals were acclimated for 2-5 days from the day of receipt until initiation of exposures on GD 5.

2.7. ANIMAL ASSIGNMENT

Animals were placed into study groups using a computerized randomization program. This ranked Gestation Day 4 body weights into blocks and randomly assigned each animal within each block into one of the study groups. Disposition of all animals not utilized in the study is maintained in the study file.

2.8. ANIMAL IDENTIFICATION

Each animal was assigned a temporary identification number upon receipt. After selection for study, each animal was ear-tagged by the Testing Facility with a number assigned by the Facility. The number assigned plus the study number comprised the unique animal number for each animal. Each cage was provided with a cage card that was color-coded for exposure level identification and contained the study number and animal number.

2.9. VETERINARY CARE

Animals were monitored by the technical staff for any conditions requiring possible veterinary care, and the staff veterinarian approved the animals for use in the study.

2.10. ANIMAL HUSBANDRY DURING NON-EXPOSURE PERIODS

2.10.1. FACILITIES MANAGEMENT/ANIMAL HUSBANDRY

Currently acceptable practices of good animal husbandry were followed e.g., *Guide for the Care and Use of Laboratory Animals*; National Academy Press, 1996. Huntingdon Life Sciences, East Millstone, New Jersey is fully accredited by the Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC).

2.10.2. HOUSING

All animals were housed individually in stainless steel suspended cages with wire mesh floors and fronts, except for GD 20-21, when solid-bottom cages with corn-cob bedding were employed (in case any animal littered prematurely). Cage rack positions in the room were rotated each week, so that possible effects due to placement were minimized. Each cage was fitted to secure a glass feeder jar with a stainless steel lid. Clean feed jars and fresh feed were provided at least every 7 days.

2.10.3. FEED

Certified Rodent Diet, No. 5002; (Meal) (PMI Feeds, Inc., St. Louis, MO) was available without restriction, except during actual exposures.

2.10.4. FEED ANALYSIS

Analytical certificates for relevant batches of feed, provided by the manufacturer, are maintained on file at the Testing Facility and are included in this report (Appendix N). There were no known contaminants in the feed that were expected to interfere with the objectives of this study.

2.10.5. WATER

Facility water was supplied by Elizabethtown Water Company, (Westfield, NJ) and was provided *ad libitum* to individual animal cages through an automated watering system, except during actual exposures.

2.10.6. WATER ANALYSIS

Water analyses are conducted monthly by the Elizabethtown Water Company, Westfield, NJ (Raritan-Millstone plant) to ensure that water meets standards specified under the EPA Federal Safe Drinking Water Act Regulations (40 CFR part 141). In addition, water samples are collected biannually from representative rooms in the Testing Facility. Chemical and microbiological water analyses were conducted on these samples by a subcontract laboratory (Benchmark Analytics, Center Valley, PA). Water analyses (provided by the supplier) and chemical and microbiological water analyses (provided by the subcontractor) results are maintained on file at the Testing Facility and are included in this report (Appendix N). There were no known contaminants in the water that were expected to interfere with this study.

2.10.7. BEDDING

Corn-cob bedding (supplier) was provided in the solid-bottomed plastic cages used from GD 20 (lot number DC295). There were no known contaminants in the bedding that were expected to interfere with this study. An analysis of a representative batch used is included in Appendix N.

2.10.8. ENVIRONMENTAL CONDITIONS

Light/Dark Cycle

A twelve-hour light/dark cycle was provided, controlled by an automatic timer.

Temperature

Temperature was monitored in accordance with Testing Facility SOPs and was maintained within the specified range:

Desired Range:	18 to 26°C
Actual Range:	23 to 24°C
Daily Average Range:	23 to 24°C

05-4287 211-DIPE-DEV

Relative Humidity

Relative humidity was monitored in accordance with Testing Facility SOPs and was maintained within the specified range:

Desired Range:	30 to 70%
Actual Range:	49 to 67%
Daily Average Range:	55 to 60%

Air Changes

The animal room was set up to provide 10-15 air changes per hour. The actual number of air changes per hour in each animal room is recorded at least twice each year, and the Testing Facility retains these records.

2.11. TEST SUBSTANCE ADMINISTRATION AND CHAMBER OPERATION

See Appendix B, Inhalation Report.

2.12. EXPERIMENTAL EVALUATIONS

2.12.1. VIABILITY EXAMINATION (CAGE-SIDE)

Observations for mortality, morbidity, and signs of severe toxicity were made at least twice daily.

2.12.2. DETAILED PHYSICAL EXAMINATIONS

In-Chamber: All animals were observed as a group at least once during each exposure. This was routinely performed near the middle of each exposure. Any pertinent behavioral changes and all signs of toxicity (including time of onset, degree and duration) were recorded.

Out-of-Chamber: Animals on study were examined daily from the day after receipt through to terminal euthanasia on GD 21. Examinations included observations of general condition, skin and fur, eyes, nose, oral cavity, abdomen and external genitalia, occurrence of secretions and excretions, and autonomic activity (e.g., lacrimation, piloerection, pupil size, unusual respiratory pattern). Changes in gait, posture and response to handling as well as the presence of clonic or tonic movements, stereotypy (e.g., excessive grooming, repetitive circling) or bizarre behavior (e.g., self-mutilation, walking backward) were recorded, as well as evaluations of respiration. During the treatment period, these evaluations were performed after exposure.

2.12.3. BODY WEIGHTS

Body weights were recorded on GD 4 (for randomization into test groups), 5, 8, 11, 14, 17, 20 and 21 (day of scheduled sacrifice). Weight gain was calculated for these intervals, and also GD 5-14, 14-21 and 5-21.

2.12.4. FEED CONSUMPTION

Feed consumption was recorded and reported for the intervals: GD 4-5, 5-8, 8-11, 11-14, 14-17, 17-20, 20-21 and 5-21.

2.13. POSTMORTEM EVALUATIONS

2.13.1. METHOD OF EUTHANASIA

All dams were euthanized by carbon dioxide inhalation, by approximately noon on each day. All live fetuses were euthanized with intraperitoneal sodium pentobarbital.

2.13.2. MACROSCOPIC EXAMINATION

A macroscopic postmortem examination was performed on all the dams. Macroscopic lesions or tissues with significant findings were saved in 10% Neutral Buffered Formalin (NBF).

Apparently non-pregnant uteri were stained with ammonium sulphide (modified Salewski test) to confirm the non-pregnant status or detect implantation sites not otherwise visible.

Each dam had the following examinations of the reproductive tract on GD 21:

The intact uterus (ovaries attached) was removed from the abdominal cavity. The gravid uterus, including the cervix, was weighed. Corpora lutea were counted and the number per ovary recorded. The number and location of the following was recorded for each uterine horn:

- live fetuses
- dead fetuses (no significant degeneration)
- late embryo-fetal deaths (recognizable dead fetus undergoing degeneration, regardless of size)
- early embryonic deaths (evidence of implantation but no recognizable fetus)

Each placenta was examined macroscopically. The maternal carcass, uterus, ovaries and placentas were then discarded.

2.14. FETAL EVALUATIONS

2.14.1. EXTERNAL EVALUATIONS

All live fetuses were weighed and individually identified within cassettes. Each live and dead retained fetus was given a macroscopic external examination for defects, including observation of the palate.

2.14.2. FETAL SOFT TISSUE (VISCERAL) EVALUATION

Approximately one-half of the fetuses in each litter (alternating fetuses within the litter, nominally) were placed in Modified Davidson's fixative for preservation and decalcification. These fetuses were subjected to soft tissue examination by gross dissection of the torso, and a razor blade sectioning technique for the head (Wilson and Warkany, 1965). All malformations and variations were recorded. Particular attention was paid to the reproductive tract for altered signs of development. During the dissection process, the sex of each fetus was confirmed by internal inspection of the gonads. Following complete dissection of the fetuses, all carcasses and sections were preserved in 10% neutral buffered formalin.

2.14.3. FETAL SKELETAL EVALUATIONS

Approximately one-half of the fetuses in each litter (alternating fetuses within the litter, nominally) were eviscerated, during which process the sex of each fetus was determined by internal inspection and recorded. The eviscerated fetuses were placed in 70%

isopropyl alcohol for preservation and processed for staining of the skeleton using Alizarin Red S. Subsequently, these fetuses were evaluated for skeletal malformations and ossification variations by an approved subcontractor, Pathology Associates International (PAI), 15 Worman's Mill Court, Suite 1, Fredrick, MD 21701, USA. These skeletal specimens were then stored in 100% glycerin with a mold inhibitor.

2.14.4. DEAD FETUSES

No conceptuses in this category (recently dead fetuses) occurred in this study. All late embryonic/fetal and early embryonic deaths were discarded.

2.15. STATISTICAL ANALYSIS

Analysis was performed by the Statistics Department of Huntingdon Life Sciences Ltd, Woolley Road, Alconbury, Huntingdon, Cambridgeshire, PE28 4HS, England. The Testing Facility was responsible for GLP compliance and the archiving of the raw data and original final statistical report.

A copy of the statistical report is provided as Appendix M. This provides details of the methods and statistical results.

2.15.1. CONTINUOUS DATA

The following mean measures were analyzed:

Maternal body weight values and body weight changes during gestation Maternal feed consumption values (presented as grams of feed/kg of body weight/day) Gravid uterine weight Corpora lutea Implantation sites Pre-implantation loss as % Early embryonic deaths ('early resorptions') Late embryo-fetal deaths ('late resorptions') Total embryo-fetal deaths, and as % of implantation sites Live fetuses Number of males and females per litter

2.15.2. INCIDENCE DATA

The following measures were analyzed:

Maternal necropsy findings

Maternal pregnancy data (including corpora lutea, implantation sites, resorptions, etc.)

Soft tissue (visceral) and skeletal fetal findings, of which only 5 visceral and 7 skeletal findings required analysis

2.15.3. FETAL BODY WEIGHT

Fetal body weight was analyzed by sex and as a composite for both sexes.

2.16. DATA STORAGE

All data documenting experimental details and study procedures and observations were recorded and maintained as raw data.

At the completion of the study (submission of the signed final report), all raw data, preserved specimens and retained samples, as well as the original study protocol (and any amendments) and the original final report will be maintained in the Archives of the Testing Facility for one year following issue of the Final report. The Sponsor will determine the final disposition of these materials.

2.17. REGULATORY REFERENCES

2.17.1. TEST GUIDELINES

This study was designed to meet or exceed the pertinent requirements of:

US EPA Vehicle Emissions Inhalation Exposure Guideline 79.61, CFR Vol. 59, No. 122, 27 June 1994.

Organization for Economic Cooperation and Development (22 January 2001). OECD Guidelines for Testing of Chemicals; OECD Guideline 414: Prenatal Developmental Toxicity Study US EPA OPPTS Health Effects Test Guidelines 870.3700, Prenatal Developmental Toxicity Study EPA 712-C-98-207, August 1998.

2.17.2. GOOD LABORATORY PRACTICES

This study was conducted in accordance with US EPA 79.60, CFR Vol. 59, No. 122, 27 June 1994. This study was performed according to protocol and Huntingdon Life Sciences' Standard Operating Procedures. The Testing Facility was responsible for the GLP compliance and archiving of raw data produced by subcontractors (PAI, and HLS Dept. of Statistics).

2.17.3. ANIMAL WELFARE ACT COMPLIANCE

This study complied with all appropriate parts of the Animal Welfare Act regulations: 9 CFR Parts 1 and 2 Final Rules, Federal Register, Volume 54, No. 168, August 31, 1989, pp. 36112-36163, effective October 30, 1989 and 9 CFR Part 3 Animal Welfare Standards; Final Rule, Federal Register, Volume 56, No. 32, February 15, 1991, pp. 6426-6505, effective March 18, 1991.

2.18. PROTOCOL DEVIATIONS

The following protocol deviations occurred during the study, but did not affect the integrity of the study:

- 1. Due to technician oversight, the Set B animals (1907-1912, 2907-2912, 3907-3912 and 4907-4912) were not given clean feeders and fresh feed after seven days of use. They were fed on Gestation Day 2 but were not given new feeders until Gestation Day 10.
- 2. Due to technician oversight, gravid uterine weights for Animal Nos. 1912 and 4910 were not taken. The uteri were opened and all the fetuses were removed prior to recording necessary weights.
- 3. Fetus number 13 from dam number 2921 did not have an external examination as per the protocol.

3. **RESULTS AND CONCLUSIONS**

3.1. TEST SUBSTANCE ANALYSIS

(Appendix A)

GC analysis of the test substance showed no significant changes in composition, comparing pre-study results to those obtained during prior studies at this Testing Facility.

3.2. CHAMBER MONITORING

(Appendix B)

Pre-study chamber distribution analyses showed that the test substance was evenly distributed within each chamber. Chamber monitoring showed that the chamber oxygen levels were at least 19%. Chamber room monitoring showed that no test substance was present in the room and that the sound and light levels were acceptable.

The target and mean (\pm standard deviation) analytical (IR) and nominal concentrations (see Appendix B) are summarized as follows:

			Analytical Concentration (mg/m ³)	Nominal Concentration (mg/m ³)
1	Air Control	0	0.00 ± 0.00	0 ± 0
2	Gasoline DIPE Vapor Condensate	2000	1982 ± 93	1995 ± 40
3	Gasoline DIPE Vapor Condensate	10000	10072 ± 546	11474 ± 513
4	Gasoline DIPE Vapor Condensate	20000	19776 ± 961	19842 ± 602

The analytically measured (IR) exposure levels of the airborne test substance were acceptably close, in the opinion of the study director, to the targeted exposure levels and to the nominal concentrations. Chamber environmental conditions averaged 24°C temperature and 41% relative humidity.

	Group	Mass Median Aerodynamic Diameter (µm)	Geometric Standard Deviation	Total Mass Concentration (mg/m ³)
1	Air Control	3.263 ± 4.3	2.033 ± 0.2	3.56E-03
2	Gasoline DIPE Vapor Condensate	4.061 ± 3.4	2.435 ± 0.5	5.15E-03
3	Gasoline DIPE Vapor Condensate	3.762 ± 2.6	2.677 ± 0.6	6.12E-03
4	Gasoline DIPE Vapor Condensate	3.118 ± 3.3	2.223 ± 0.1	6.29E-03

Mean particle size distribution measurements for the exposures are summarized as follows:

These results indicated that the atmospheres were essentially gas/vapor only, as expected, since there was no substantial difference between the test substance chambers and the air control chamber.

Analysis of the major components in the neat test substance and the test atmospheres (see Appendix A) showed an acceptably close comparison, in the opinion of the study director, between the neat test substance and the vaporized test substance. These data demonstrated that the test animals were exposed, as expected, to all of the major components of the test substance in their acceptably proper proportions. The data were consistent pretest and during the study indicating stability of the test substance and the atmosphere generation techniques.

3.3. MATERNAL DATA

3.3.1. MORTALITY AND PREGNANCY

(Table 1; Appendices C and M)

All animals survived until the scheduled termination of the study and pregnancy rates were 92-100% across all the groups.

3.3.2. CLINICAL OBSERVATIONS

(Table 2; Appendices B and D)

During the exposure and non-exposure periods, there was little overt reaction to treatment. There was only an increased incidence of red nasal discharge among the 10000 and 20000 mg/m³ exposed animals, as compared with the other groups. Chromodacryorrhea was also observed at a low incidence at 20000 mg/m³, in animals that did not show the nasal discharge. These two findings (interpreted as secretion of porphyrin) are common reactions to mild stress in rats. An animal (#4908) exposed at 20000 mg/m³ was noted with an abdominal mass on GD 17 -21 and confirmed as a mammary gland mass at necropsy (see 3.3.5.).

3.3.3. BODY WEIGHTS

(Figure 1; Tables 3, 4 and 8; Appendices E, F, J and M)

The exposure regimen resulted in only minor, non-statistically significant reductions in maternal body weight (97.6%, 96.9% and 96.2% of the Control group value on GD 21 for the 2000, 10000 and 20000 mg/m³ groups, respectively).

The exposure regimen resulted in only transient reductions in maternal weight gain (up to approximately 25% reduced from Control at GD 11-14 interval, partly resolving by GD 21) during the exposure period. These changes were negligible at 2000 mg/m³ and most noticeable at 20000 mg/m³.

3.3.4. FEED CONSUMPTION

(Figure 2; Table 5; Appendices G and M)

The exposure regimen resulted in only transient reductions in feed consumption (up to approximately 10% reduced) during the exposure period. These changes were negligible at 2000 mg/m³ and most noticeable at 20000 mg/m³.

3.3.5. MACROSCOPIC POSTMORTEM EVALUATIONS

(Table 6; Appendices H and M)

The only maternal necropsy finding was of a mass in the mammary tissue of one animal (#4908) at 20000 mg/m^3 . This finding was considered incidental, and not related to treatment.

3.3.6. UTERINE IMPLANTATION DATA

(Table 7; Appendices I and M)

There was no effect of the exposures on the pregnancies. Pre- and post-implantation losses and litter size were similar in all the groups.

3.3.7. GRAVID UTERINE WEIGHT DATA

(Table 8; Appendices J and M)

The maternal net body weight change from Day 5 minus the gravid uterine weight ("net weight change from Day 5" in Table 8 and Appendix J) was significantly reduced (95% of the control group value in the 20000 mg/m³ group); however, this reduction was not considered adverse because the reduction was minimal and within normal animal variation.

Uterine weight was reduced (96% of the control group value) but this reduction was not considered adverse because the differences were slight, within normal animal variation and there were no statistically significant differences between the treated group and control group.

The percent reduction in uterine weight and in maternal net body weight change from Day 5 minus the gravid uterine weight in the exposed groups was comparable with the minor reduction in maternal body weights and body weight changes observed in these groups.

3.4. FETAL DATA

3.4.1. Fetal Body Weights

(Table 7; Appendices I, K and M)

There was no effect of the exposures on fetal weight at GD 21. The very marginal (3-4%) difference from Control that occurred in the 20000 mg/m3 group, while achieving statistical significance in total fetal and female weights, was considered not to represent an effect of the exposures, particularly in context with the lack of other signs of effect on pregnancy outcome in the study and the values are comparable to the historical control range for published data from Charles River Labs (see Appendix P).

3.4.2. Fetal Observations

(Table 9; Appendices L and M)

A very small number of major abnormalities occurred sporadically in the study, with no relationship to the exposures.

Similarly, there were sporadic incidences across the groups, of structural variants, both soft-tissue and skeletal. No association with the exposures was inferred.

Although the incidence of 14^{th} (supernumerary, rudimentary) ribs was higher at 20000 mg/m³ than in the other groups, the difference from Control did not achieve statistical significance, and remained consistent with the range of incidences that are seen in this strain of animal. The mean group incidence for this strain in this laboratory is approximated by the 2000 and 10000 mg/m³ group mean incidences (7 and 5 fetuses in 5 litters, respectively), while the 20000 mg/m³ exposure group incidence (12 fetuses in 9 litters) is nearer the upper limit of the range seen previously (14 fetuses in 10 litters) (see Appendix P).

There was no evidence of any effect of the exposures on the general state of skeletal ossification.

Huntingdon Life Sciences	05-4287	Page 28	
	211-DIPE-DEV	Final Report	

4. CONCLUSIONS

Exposure of pregnant rats to atmospheres of 0 (Air Control), 2000, 10000 or 20000 mg/m³ of Gasoline DIPE Vapor Condensate, 6 hours/day on gestation days 5-20, resulted in only transient reductions in maternal weight gain and feed consumption during the exposure period. These changes were negligible at 2000 mg/m³ and most noticeable at 20000 mg/m³. It was considered that a no-observed-adverse-effect level (NOAEL) for maternal effects was evident at 2000 mg/m³. There was no effect of the exposures at any level on pregnancy outcome, in terms of pre- or post-implantation loss, fetal weight or the incidence of fetal abnormalities and variants. A NOAEL for embryo-fetal effects was therefore established at 20000 mg/m³.

REFERENCES

Salewski, E. 1964. Farbemethode zum makroskopischen machweis von implantationsstellen am uterus der ratte. *Archiv. Path. Exp. Pharmakol.* 247: 367.

Wilson, J.S. and Warkany, J.1965, Teratology: Principles and Techniques, Chicago: The University of Chicago Press, Page 271.

Note: Appendix M provides details of the methods and statistical results.

CALCULATIONS

Feed Consumption (g/kg/day):

[(grams of feed presented – grams of feed remaining)/average of the previous and current body weights in kilograms]/no. days

Preimplantation Loss:

no. of corpora lutea - no. of implantation sites

Percent Preimplantation Loss:

[(no. of corpora lutea – no. of implantation sites)/no. of corpora lutea] X 100

Postimplantation Loss:

total no. of early and late resorptions and dead fetuses

Percent Postimplantation Loss:

(no. of early and late resorptions and dead fetuses/no. of implantation sites) X 100

Mean % Live Fetuses (number per animal):

(no. of male or female live fetuses/ total number of live fetuses) X 100

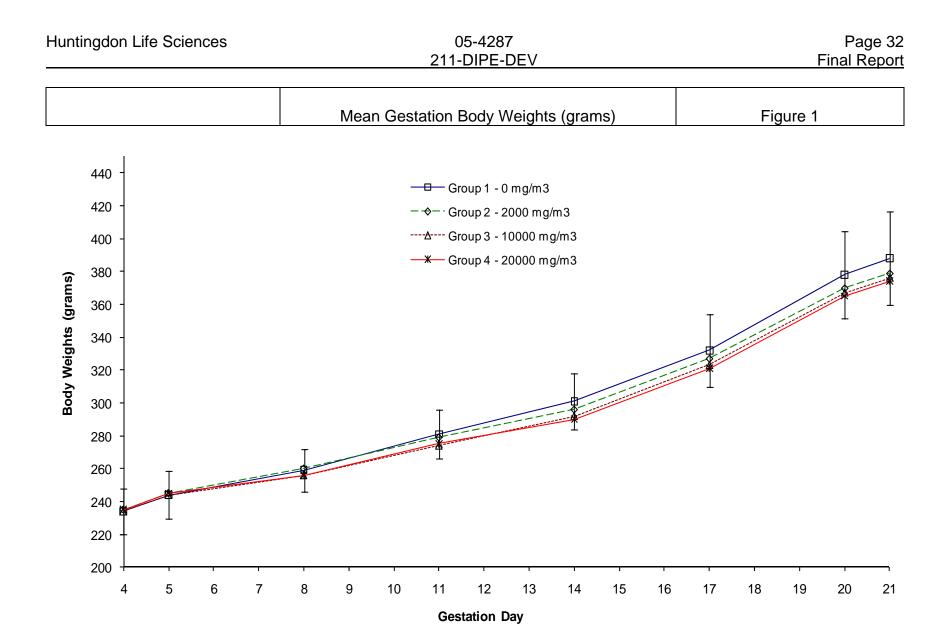
Mean % Dead Fetuses (number per animal):

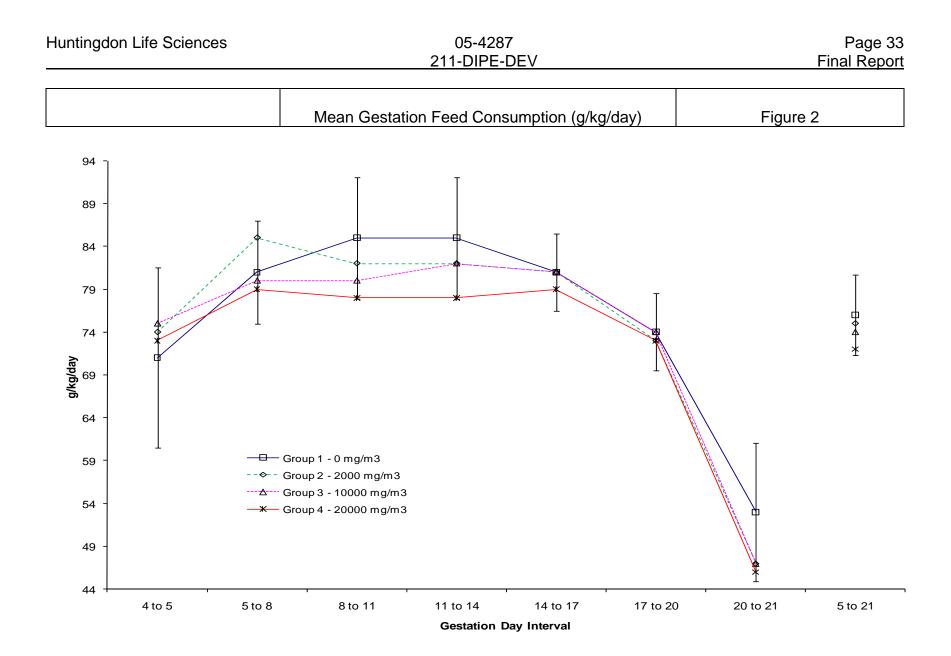
(no. of dead fetuses/ total number of implantation sites) X 100

Mean Percent Resorptions (implants per animal):

total no. of early or late resorptions/ total number of implantation sites) X 100

Huntingdon Life Sciences


05-4287 211-DIPE-DEV


Page 31 Final Report

General Preface	

General Notes

Individual animal data values presented in this report may be rounded. Unrounded individual animal data values are used to calculate the reported mean and standard deviation values. Therefore, use of the reported individual values to reproduce means, standard deviations and/or to perform any subsequent calculations may produce minor discrepancies between the calculated values and those presented in this report.

Huntingdon Life Sciences 05-4287

TABLE 1

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

		SUMMARY OF SUP	RVIVAL AND PREGNANCY			
DOSE GROUP: DOSE LEVEL (MG/M3):		1 0	2 2000	3 10000	4 20000	
No. of females mated	N	24	24	24	24	
Pregnant - Died/sacrificed moribund - Elective sacrifice	N N N	23 0 0	23 0 0	24 0 0	22 0 0	
Nonpregnant - Died/sacrificed moribund - Elective sacrifice	N N N	1 0 0	1 0 0	0 0 0	2 0 0	
Total no. of females died/ sacrificed moribund	N %	0 0.0	0 0.0	0 0.0	0 0.0	
Examined at scheduled c-section	Ν	24	24	24	24	
- Nonpregnant	Ν	1	1	0	2	
- With total implant loss	N %	0 0.0	0 0.0	0 0.0	0 0.0	
- With viable fetuses	N %	23 95.8	23 95.8	24 100.0	22 91.7	

Huntingdon Life Sciences 05-4287

TABLE 2

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

SUMMARY	OF	CLINICAL	OBSERVATIONS	DURING	GESTATION	-	(frequency/animals)

DOSE GROUP: DOSE LEVEL (MG/M3):	1 0	2 2000	3 10000	4 20000	
DAY 4 to 21					
Normal					
WITHIN NORMAL LIMITS	431/24	421/24	382/24	349/23	
ERMINAL SACRIFICE	24/24	24/24	24/24	24/24	
Dermal-General					
ALOPECIA - GENERAL	0/ 0	0/ 0	0/ 0	8/ 1	
Ocular					
'HROMODACRYORRHEA - UNILATERAL	0/ 0	0/ 0	0/ 0	14/ 3	
Oral/Buccal					
INCISORS MALOCCLUDED JASAL DISCHARGE – RED	0/ 0 1/ 1	0/ 0 11/ 3	0/ 0 50/15	18/ 1 43/ 9	
Palpable masses					
MASS	0/ 0	0/ 0	0/ 0	5/ 1	

Page 35

TABLE 3

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

-	OSE GROUP:	1	2	3	4
	L (MG/M3):	0	2000	10000	¥ 20000
DAY 4	MEAN	234	235	234	235
2111 1	S.D.	14.0	16.6	15.7	14.6
	Ν	23	23	24	22
DAY 5	MEAN	244	245	244	245
	S.D.	14.6	16.5	13.9	15.2
	N	23	23	24	22
DAY 8	MEAN	259	260	256	256
	S.D.	12.8	18.0	14.4	16.3
	Ν	23	23	24	22
DAY 11	MEAN	281	279	274	275
	S.D.	14.9	19.6	15.6	19.5
	Ν	23	23	24	22
DAY 14	MEAN	301	296	292	290
	S.D.	17.0	20.3	14.8	19.5
	Ν	23	23	24	22
DAY 17	MEAN	332	327	323	321
	S.D.	22.2	24.3	18.7	24.9
	Ν	23	23	24	22
DAY 20	MEAN	378	370	367	365
	S.D.	26.3	29.9	24.2	27.1
	Ν	23	23	24	22
DAY 21	MEAN	388	379	376	374
	S.D.	28.6	32.7	25.9	27.4
	Ν	23	23	24	22

TABLE 4

DOS	SE GROUP:	1	2	3	4
DOSE LEVEL		0	2000	10000	20000
days 4 to 5	MEAN	10	11	10	10
	S.D.	6.1	4.7	5.2	3.2
	N	23	23	24	22
DAYS 5 TO 8	MEAN	15	15	13	11
	S.D.	4.5	4.7	5.5	4.7
	Ν	23	23	24	22
DAYS 8 TO 11	MEAN	22	19	18	20
	S.D.	4.7	3.6	3.9	5.5
	Ν	23	23	24	22
DAYS 11 TO 14	MEAN	20	17	17	15
	S.D.	4.2	5.0	3.7	4.0
	Ν	23	23	24	22
DAYS 14 TO 17	MEAN	31	31	31	31
	S.D.	7.3	6.9	7.6	6.8
	N	23	23	24	22
DAYS 17 TO 20	MEAN	46	44	44	44
	S.D.	7.6	8.9	9.9	7.7
	Ν	23	23	24	22
DAYS 20 TO 21	MEAN	10	9	9	8
	S.D.	5.2	5.0	4.9	5.1
	Ν	23	23	24	22
DAYS 5 TO 14	MEAN	57	50	48	45
	S.D.	8.4	7.8	7.7	9.5
	Ν	23	23	24	22
DAYS 14 TO 21	MEAN	86	84	84	83
	S.D.	15.5	16.3	17.0	10.0
	Ν	23	23	24	22
DAYS 5 TO 21	MEAN	144	134	132	129
	S.D.	20.6	21.5	21.0	16.0
	N	23	23	24	22

TABLE 5

DOSE LEVEL (MG/M3): 0 2000 10000 2000 DAXS 4 TO 5 MEAN N 71 22 74 23 75 11.4 10.2 22 DAXS 5 TO 8 MEAN S.D. 81 22 85 23 80 24 79 22 DAXS 5 TO 8 MEAN S.D. 81 6.0 85 14.1 6.0 6.0 DAXS 8 TO 11 MEAN N 85 22 82 23 80 24 79 21 DAXS 8 TO 11 MEAN N 85 22 82 23 80 24 78 21 DAXS 11 TO 14 MEAN N 85 22 82 23 82 24 78 21 DAXS 11 TO 14 MEAN N 85 22 82 23 78 22 78 23 DAXS 14 TO 17 MEAN N 81 22 81 23 81 22 71 23 74 22 73 22 DAXS 17 TO 20 MEAN N 74 23 73 23 74 22 73 23 74 22 73 22 DAXS 17 TO 20 MEAN N 74 23 73 23 74 22 73 23 74 22 73 23 DAXS 17 TO 20 N MEAN N 53 23 74	DOS	E GROUP:	1	2	3	4
S.D.10.511.511.410.2AYS 5 TO 8MEAN81858079S.D.6.014.16.021AYS 8 TO 11MEAN85828078AYS 11 TO 14MEAN85828278AYS 14 TO 17MEAN81818181AYS 17 TO 20MEAN81818181AYS 20 TO 21MEAN53474747AYS 20 TO 21MEAN53474746S.D.7.17.55.87.221AYS 14 TO 17MEAN81818179AYS 17 TO 20MEAN74737473AYS 20 TO 21MEAN53474746S.D.8.17.55.87.8AYS 20 TO 21MEAN53474746S.D.8.17.55.87.8AYS 20 TO 21MEAN53474746S.D.8.17.55.87.8AYS 20 TO 21MEAN53474746S.D.8.17.55.87.8AYS 20 TO 21MEAN53474747AYS 20 TO 21MEAN53474746S.D.8.17.55.87.87.8AYS 20 TO 21MEAN53474746S.D.8.17.55.87.8<						
S.D. 10.5 11.5 11.4 10.2 AYS 5 TO 8 MEAN 81 85 80 79 AYS 5 TO 8 MEAN 81 85 80 79 AYS 5 TO 8 MEAN 81 85 80 79 AYS 8 TO 11 MEAN 85 82 80 78 AYS 11 TO 14 MEAN 85 82 82 78 AYS 14 TO 17 MEAN 81 81 81 79 AYS 14 TO 17 MEAN 81 81 81 79 AYS 17 TO 20 MEAN 74 73 74 73 AYS 20 TO 21 MEAN 53 47 47 46 S.D. 23 23 24 21 AYS 20 TO 21 MEAN 53 47 47 73 AYS 20 TO 21 MEAN 53 47 47 46 S.D. 8.1 7.5 5.8 7.8 7.8 AYS 20 TO 21 MEAN 53 47 47 47	AVG 4 TO 5	ΜΕΛΝ	71	74	75	73
N 22 23 24 22 AYS 5 TO 8 MEAN S.D. N B1 22 85 23 80 24 79 6.0 22 AYS 5 TO 8 MEAN N 81 22 85 23 80 24 78 21 AYS 8 TO 11 MEAN S.D. N 85 22 82 23 80 24 78 21 AYS 11 TO 14 MEAN N 85 22 82 23 82 24 78 21 AYS 14 TO 17 MEAN N 85 22 82 23 78 22 78 22 AYS 14 TO 17 MEAN N 81 22 81 23 81 22 81 23 81 22 81 23 79 22 AYS 17 TO 20 MEAN N 74 3.3 74 3.3 74 3.7 74 4.3 73 22 72 AYS 17 TO 20 MEAN N 74 3.3 74 3.3 74 3.7 74 4.3 73 22 72 AYS 20 TO 21 MEAN N 53 23 47 23 74 23 78 23 7.8 23 7.8 24 7.8 23	A15 4 10 5					
AYS 5 TO 8 MEAN S.D. N 8 6 0 14.1 22 8 6.0 23 79 24 6.0 21 AYS 8 TO 11 MEAN S.D. N 85 82 22 80 78 5.7 71 22 23 24 21 AYS 11 TO 14 MEAN S.D. N 85 82 22 80 78 5.7 5.7 AYS 11 TO 14 MEAN S.D. N 85 82 22 82 82 23 78 AYS 11 TO 14 MEAN S.D. N 85 82 22 23 22 78 AYS 14 TO 17 MEAN S.D. N 81 81 81 81 91 79 AYS 17 TO 20 MEAN S.D. N 74 73 23 3.7 4.3 AYS 17 TO 20 MEAN S.D. N 53 47 47 46 7.8 7.8 AYS 20 TO 21 MEAN N 53 47 47 46 7.8 7.8						
S.D. N S.D. 22 6.0 23 14.1 23 6.0 24 6.0 21 AYS 8 TO 11 MEAN S.D. N 85 22 82 23 80 24 78 5.5 5.7 21 AYS 11 TO 14 MEAN S.D. N 85 22 82 23 82 24 78 21 AYS 11 TO 14 MEAN S.D. N 85 22 82 23 82 22 78 22 78 22 AYS 14 TO 17 MEAN N 81 22 81 23 81 22 79 22 74 23 79 22 AYS 14 TO 17 MEAN N 81 23 81 23 81 22 78 22 74 21 79 22 AYS 17 TO 20 MEAN N 74 23 73 23 74 22 73 22 74 22 73 22 AYS 20 TO 21 MEAN N 53 23 47 23 47 23 47 24 46 7.8 7.8 23		14	22	25	21	22
N 22 23 24 21 AXS 8 TO 11 MEAN S.D. N 85 22 82 23 80 24 78 5.7 24 AXS 11 TO 14 MEAN S.D. N 85 22 82 23 82 24 82 21 AXS 11 TO 14 MEAN S.D. N 85 22 82 23 82 22 82 21 AXS 14 TO 17 MEAN N 81 22 81 23 81 22 81 23 79 22 AXS 14 TO 17 MEAN N 81 22 81 23 81 22 71 23 74 22 73 22 AXS 17 TO 20 MEAN N 74 23 73 23 74 22 73 22 72 AYS 20 TO 21 MEAN N 53 23 47 23 47 23 47 23 47 22 46 5.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8	AYS 5 TO 8	MEAN	81	85	80	79
AYS 8 TO 11 MEAN S.D. N 85 22 65 23 82 24 80 5.5 21 AYS 1 TO 14 MEAN N 85 22 82 23 82 24 78 22 AYS 11 TO 14 MEAN N 85 22 82 23 82 22 82 21 AYS 14 TO 17 MEAN N 81 22 81 23 81 22 81 23 81 22 9 21 AYS 14 TO 17 MEAN N 81 22 81 23 81 22 9 23 4.0 22 9 21 AYS 14 TO 17 MEAN N 81 22 81 23 81 22 9 23 4.0 22 9 21 AYS 17 TO 20 N MEAN N 74 23 73 23 74 22 73 22 74 22 73 22 AYS 20 TO 21 MEAN N 53 23 47 23 47 23 47 23 46 7.8 7.8 23 7.8 24 7.8		S.D.	6.0	14.1	6.0	6.0
S.D. N 7.1 22 4.6 23 5.5 24 5.7 21 AYS 11 TO 14 MEAN S.D. N 85 22 82 23 82 22 78 3.9 22 AYS 14 TO 17 MEAN N 81 22 81 23 81 22 81 23 79 22 AYS 14 TO 17 MEAN N 81 22 81 23 81 22 71 23 74 22 79 21 AYS 17 TO 20 MEAN N 74 23 73 23 74 22 73 22 74 22 73 22 AYS 17 TO 20 MEAN N 74 23 73 23 74 22 73 22 72 22 AYS 20 TO 21 MEAN N 53 23 47 23 47 24 46 5.8 7.8 23 7.8 24		N	22	23	24	21
S.D. N 7.1 22 4.6 23 5.5 24 5.7 21 AYS 11 TO 14 MEAN S.D. N 85 22 82 23 82 22 78 3.9 22 AYS 14 TO 17 MEAN N 81 22 81 23 81 22 81 23 79 22 AYS 14 TO 17 MEAN N 81 22 81 23 81 22 71 23 74 22 79 21 AYS 17 TO 20 MEAN N 74 23 73 23 74 22 73 22 74 22 73 22 AYS 17 TO 20 MEAN N 74 23 73 23 74 22 73 22 72 22 AYS 20 TO 21 MEAN N 53 23 47 23 47 24 46 5.8 7.8 23 7.8 24						
N 22 23 24 21 AYS 11 TO 14 MEAN S.D. N 85 22 82 23 82 22 78 3.9 4.0 AYS 14 TO 17 MEAN N 81 22 81 81 79 6.0 4.4 AYS 17 TO 20 MEAN N 74 23 73 74 23 73 74 22 73 AYS 17 TO 20 MEAN N 74 23 73 23 3.7 22 4.3 23 22 22 AYS 20 TO 21 MEAN N 53 23 47 23 47 23 47 23 47 23 46 22 AYS 20 TO 21 MEAN N 53 23 47 23 47 23 47 23 47 24 46 28	AYS 8 TO 11					
AYS 11 TO 14 MEAN 85 82 82 78 NN 7.1 4.7 3.9 4.0 NN 22 23 22 21 AYS 14 TO 17 MEAN 81 81 81 79 AYS 14 TO 17 MEAN 81 81 81 79 AYS 14 TO 17 MEAN 81 81 6.0 4.4 N 22 23 22 21 AYS 17 TO 20 MEAN 74 73 74 73 AYS 20 TO 21 MEAN 53 47 47 46 S.D. 8.1 7.5 5.8 7.8 N 23 23 24 22						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Ν	22	23	24	21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	AYS 11 TO 14	MEAN	85	82	82	78
AYS 14 TO 17 MEAN 81 81 81 79 S.D. 4.5 4.5 6.0 4.4 N 22 23 22 21 AYS 17 TO 20 MEAN 74 73 74 73 S.D. 4.5 3.3 3.7 4.3 N 23 23 22 22 AYS 17 TO 20 MEAN 74 73 74 73 N 23 23 22 22 22 AYS 20 TO 21 MEAN 53 47 47 46 N 23 23 23 24 22 N 23 23 24 22 21		S.D.	7.1	4.7	3.9	4.0
S.D. 4.5 4.5 6.0 4.4 N 22 23 22 21 AYS 17 TO 20 MEAN 74 73 74 73 S.D. 4.5 3.3 3.7 4.3 N 23 23 22 22 AYS 17 TO 20 MEAN 74 73 74 73 N 23 23 22 22 22 AYS 20 TO 21 MEAN 53 47 47 46 N 23 23 23 24 22		N	22	23	22	21
S.D. 4.5 4.5 6.0 4.4 N 22 23 22 21 AYS 17 TO 20 MEAN 74 73 74 73 S.D. 4.5 3.3 3.7 4.3 N 23 23 22 22 AYS 17 TO 20 MEAN 74 73 74 73 N 23 23 22 22 22 AYS 20 TO 21 MEAN 53 47 47 46 N 23 23 23 24 22	AYS 14 TO 17	MEAN	81	81	81	79
N 22 23 22 21 AYS 17 TO 20 MEAN 74 73 74 73 S.D. 4.5 3.3 3.7 4.3 N 23 23 22 22 AYS 20 TO 21 MEAN 53 47 47 46 N 23 23 23 24 22				4.5		4.4
S.D. 4.5 3.3 3.7 4.3 N 23 23 22 22 AYS 20 TO 21 MEAN 53 47 47 46 S.D. 8.1 7.5 5.8 7.8 N 23 23 24 22			22	23	22	21
S.D. 4.5 3.3 3.7 4.3 N 23 23 22 22 AYS 20 TO 21 MEAN 53 47 47 46 S.D. 8.1 7.5 5.8 7.8 N 23 23 24 22	AVS 17 TO 20	MEAN	74	73	74	73
N 23 23 22 22 AYS 20 TO 21 MEAN 53 47 47 46 S.D. 8.1 7.5 5.8 7.8 N 23 23 24 22	10 17 10 10					
S.D.8.17.55.87.8N23232422				23	22	
S.D.8.17.55.87.8N23232422	AYS 20 TO 21	MEAN	53	47	47	46
N 23 23 24 22						
AYS 5 TO 21 MEAN 76 75 74 72						
	AYS 5 TO 21	MEAN	76	75	74	72
S.D. 4.7 4.0 3.6 3.8						

TABLE 6

SUMMARY OF MATERNAL NECROPSY OBSERVATIONS						
	OSE GROUP: L (MG/M3):	1 0	2 2000	3 10000	4 20000	
FEMALES	Ν	24	24	24	24	
GROSS EXAM	N	0	0	0	1	
MASS	N %	0 0.0	0 0.0	0 0.0	1 4.2	

TABLE 7

		SUMMARY OF CE	SAREAN SECTION DATA			
DOSI DOSE LEVEL		1 0	2 2000	3 10000	4 20000	
Pregnant (at scheduled sacrifice	N e)	23	23	24	22	
Dams with no Viable H	Fetuses N	0	0	0	0	
Dams with Viable Fetu	uses N	23	23	24	22	
Corpora Lutea No. per animal	TOTAL MEAN S.D.	343 14.9 2.78	334 14.5 2.06	354 14.8 2.52	334 15.2 2.63	
Implantation Sites No. per animal	TOTAL MEAN S.D.	311 13.5 2.71	310 13.5 1.50	315 13.1 2.85	307 14.0 2.38	
Preimplantation Loss No. per animal	TOTAL MEAN S.D.	32 1.4 1.88	24 1.0 1.46	39 1.6 2.96	27 1.2 1.77	
% per animal	MEAN% S.D.	9.3 13.46	6.6 7.99	10.4 18.58	7.6 9.14	
Live Fetuses No. per animal	TOTAL MEAN S.D.	300 13.0 2.64	286 12.4 2.64	302 12.6 3.06	292 13.3 2.60	
Males	TOTAL MEAN% S.D.	146 48.5 10.94	133 46.1 14.75	154 51.2 12.50	135 46.8 13.92	
Females	TOTAL MEAN% S.D.	154 51.5 10.94	153 53.9 14.75	148 48.8 12.50	157 53.2 13.92	

TABLE 7

		SUMMARY OF CE	SAREAN SECTION DATA			
DOSE GRC DOSE LEVEL (MG/M	13):	1 0	2 2000	3 10000	4 20000	
Postimplantation Loss	TOTAL	11	24	13	15	
No. per animal	MEAN S.D.	0.5 0.67	1.0 2.08	0.5 0.83	0.7 0.65	
% implants per animal	MEAN% S.D.	3.4 4.66	7.9 14.89	5.1 8.64	5.2 5.15	
Dead Fetuses No. per animal	TOTAL MEAN S.D.	0 0.0 0.00	0 0.0 0.00	0 0.0 0.00	0 0.0 0.00	
% of implants per animal	MEAN% S.D.	0.0	0.0 0.00	0.0	0.0 0.00	
Resorptions: Early No. per animal	TOTAL MEAN S.D.	10 0.4 0.66	23 1.0 2.07	13 0.5 0.83	15 0.7 0.65	
% of implants per animal	MEAN% S.D.	3.1 4.66	7.6 14.80	5.1 8.64	5.2 5.15	
Resorptions: Late No. per animal	TOTAL MEAN S.D.	1 0.0 0.21	1 0.0 0.21	0 0.0 0.00	0 0.0 0.00	
% of implants per animal	MEAN% S.D.	0.3 1.39	0.3 1.60	0.0	0.0 0.00	

TABLE 7

SUMMARY OF CESAREAN SECTION DATA						
DOSE DOSE LEVEL (N	GROUP: 4G/M3):	1 0	2 2000	3 10000	4 20000	
Fetal Body Weight (g)	MEAN S.D. N	5.7 0.29 23	5.8 0.30 23	5.7 0.28 24	5.5 0.32 22	
Male Fetuses	MEAN S.D.	5.9 0.32	5.9 0.33	5.8 0.32	5.7 0.33	
Female Fetuses	MEAN S.D.	5.6 0.28	5.6 0.33	5.5 0.25	5.4 0.31	

TABLE 8

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

SUMMARY OF GRAVID UTERINE WEIGHT AND NET BODY WEIGHT CHANGE (GRAMS)

DOSE GROUP:		1	2	3	4	
DOSE LEVEL (MG/M	DOSE LEVEL (MG/M3):		2000	10000	20000	
JTERUS WEIGHT	MEAN	101	97	96	96	
	S.D.	19.4	19.8	22.5	15.7	
	Ν	22	23	24	20	
ADJUSTED WEIGHT	MEAN	286	283	280	273	
	S.D.	18.1	19.0	17.1	15.9	
	Ν	22	23	24	20	
IET WEIGHT CHANGE FROM DAY 5	MEAN	43	37	36	29	
	S.D.	11.1	9.1	11.7	10.6	
	Ν	22	23	24	20	
EIGHT CHANGE FROM DAY 5	MEAN	144	134	132	129	
	S.D.	20.6	21.5	21.0	16.0	
	N	23	23	24	22	

UTERUS WEIGHT = ABSOLUTE GRAVID UTERINE WEIGHT ADJUSTED WEIGHT = TERMINAL BODY WEIGHT - UTERUS WEIGHT NET WEIGHT CHANGE FROM DAY 5 = ADJUSTED WEIGHT - DAY 5 BODY WEIGHT WEIGHT CHANGE FROM DAY 5 = TERMINAL BODY WEIGHT - DAY 5 BODY WEIGHT Page 43

Huntingdon Life So	ciences	05-4287 211-DIPE-D							Fina	Page 44 al Report
Females		Summary of Fetal Ol	bserva	ations					Tab	le 9
			Fetuse	es			Litters			
Observations (Major abnormalitie	es in CAPITALS)	Group Number examined	1 300	2 286	3 302	4 292	1 23	2 23	3 24	4 22
HYDROCEPHALY ^a , A LOBE, THYMUS ANE	Nophthalmia; hypopl D spleen	ASTIC APICAL LUNG			1				1	
MICROPHTHALMIA/	ANOPHTHALMIA, UNILA	FERAL			1				1	
EXOCCIPITAL FUSED TO 1ST CERVICAL ARCH						1				1
MANDIBLE SHORTENED, MODERATE				1				1		
THORACIC VERTEBI MALFORMED	RA 13, LUMBAR VERTEBI	RA 1: ACENTRIC,				1				1
FORELIMB SHORTE	NED, RIGHT			1				1		
ANAL ATRESIA, ABS	SENT SACRAL AND CAUE	DAL VERTEBRAE	1				1			
Additional subclavia	an artery		1				1			
Innominate artery a	absent		1		2	1	1		2	1
Undescended thymi	ic tissue		10	11	5	11	6	8	3	8
aNatad as DOMED (PANILIM in external obs	onvotions								

^aNoted as DOMED CRANIUM in external observations.

Huntingdon Life Sciences	05-4287 211-DIPE-DEV						Fin	Page 45 al Report
Females	Summary of Fetal Obser	vations					Tab	le 9
	Fetu				Litters			
Observations (Major abnormalities in CAPITALS)	Group Number examined 300		3 302	4 292	1 23	2 23	3 24	4 22
Renal papilla (e) not fully developed		l	2	1	1		2	1
Ureter(s) distended		l	1	1	1		1	1
Left umbilical artery		4	1	2	1	3	1	2
Testis displaced, medially, left		l			1			
7th cervical rib(s) present		1		3		1		3
Sternebra(e) malaligned	1*	11	13	3	9	9	10	3
Rib(s) rudimentary, 13th		l		3	1			1
Rib(s) rudimentary, 14th	:	2 7	5	12	1	5	5	9
25 presacral vertebrae		l		3	1			1
27 presacral vertebrae				1				1

Huntingdon Life So	ciences	05-4287 211-DIPE-E							Fina	Page 46 al Report
Females		Summary of Fetal O	bserva	ations					Tab	le 9
			Fetus	es			Litters			
Observations		Group	1	2	3	4	1	2	3	4
(Major abnormalitie	es in CAPITALS)	Number examined	300	286	302	292	23	23	24	22
Hyoid body/arch(es	s) unossified		1		1	1	1		1	1
Sternebra 5 and/or	6 unossified		1		3	3	1		3	2
Metatarsals: 1 unos	ssified, bilateral					2				1

Huntingdon Life Sciences	05-4287	Page 1
· · · · · · · · · · · · · · · · · · ·		Final Report
	Analytical Report	Appendix A

STUDY TITLE

Analytical Report For:

Gasoline DIPE Vapor Condensate: Embryo-Fetal Toxicity Study in Rats by Inhalation Exposure

AUTHOR

Yonggang Wang

REPORT DATE

19 October 2012

STUDY NUMBER

05-4287

Huntingdon Life Sciences	05-4287	Page 2 Final Report	
	Analytical Report	Appendix A	

SIGNATURES

Written by:

Yonggang Wang, M.A. Senior Project Manager Formulation Chemistry Services

1900t12

Date

Reviewed and Approved by:

Kai Kurylak, B.S. Associate Director Analytical Operations

90ct 12 Date

Huntingdon Life Sciences	05-4287	Page 3
	1	Final Report
	Analytical Report	Appendix A

Table of Contents

Study Title Page	1
Signature Page	2
Table of Contents	
1. Summary	4
2. Experimental Procedures	4
3. Results and Discussion	5

Tables

 V-A	Gasoline DIPE Vapor Condensate Characterization ("Test Substance Stability")
IV-C	C Gasoline DIPE Vapor Condensate Characterization ("Exposure 18")
Figu	ures
1	A Typical Gas Chromatogram of Group 1 (Air Control) Chamber Sample 12
11	A Typical Gas Chromatogram of Group 2 (Gasoline DIPE Vapor Condensate)
	Chamber Sample13
Ш	A Typical Gas Chromatogram of Group 3 (Gasoline DIPE Vapor Condensate)
	Chamber Sample
IV	A Typical Gas Chromatogram of Group 4 (Gasoline DIPE Vapor Condensate)

Page	e 50
1 480	

Huntingdon Life Sciences	05-4287	Page 4 Final Report
	Analytical Report	Appendix A

1. Summary

A neat sample of the Gasoline DIPE (Diisopropyl Ether) Vapor Condensate (G/DIPE VC) test substance was assayed before initiation of animal exposures to demonstrate stability by comparison to prior data at this Testing Facility.

Inhalation chamber samples of the Gasoline DIPE Vapor Condensate were analyzed during each week of the study to demonstrate the stability of the test substance and the comparability of the test atmospheres to the neat test substance.

The analytical method (HLS-001-02R2) was validated at Huntingdon Life Sciences (HLS). The analytical method involves, when appropriate, the collection of chamber air samples onto charcoal tubes, extraction with carbon disulfide, and quantification using Gas Chromatography with Flame Ionization Detection (FID).

2. Experimental Procedures

The analytical method (HLS-001-02R2) was validated by Formulation Chemistry at HLS. Details of the analytical method are maintained in this study file.

The neat test substance and the charcoal tube samples containing the test substance were received from the Inhalation Department at HLS. Samples analyzed to determine the relative concentration of the major components of Gasoline DIPE Vapor Condensate were extracted from the charcoal tubes with Carbon Disulfide (CS₂). The extracted solutions were analyzed by Gas Chromatography equipped with a Supelco PetrocolTM DH 150 (150m x 0.25mm, 1.0 μ m) column and Flame Ionization Detector (FID). PE Nelson TotalChrom 6.2.1 installed on a personal computer was used for data collection and processing.

Interval	Date of Exposures	Date Received	Date Analyzed
Pretest/Stability	N/AV	29 Mar 05	30-31 Mar 05
Pretest /Trials	02 & 05 Aug 05	02 & 05 Aug 05	03-05 Aug 05
Exposure-4	09 & 11 Aug 05	09 & 11 Aug 05	09 -11 Aug 05
Exposure-11	16 Aug 05	16 Aug 05	16 -18 Aug 05
Exposure-18	23 Aug 05	23 Aug 05	23 - 24 Aug 05

Date of sample analysis is listed as follows:

Page 51	

Huntingdon Life Sciences	05-4287	Page 5 Final Report
	Analytical Report	Appendix A

3. Results and Discussion

Before the study, a Gasoline DIPE Vapor Condensate sample was analyzed to determine the stability of the area percent of the test substance's major components. During the trials and exposures, Gasoline DIPE Vapor Condensate air samples were analyzed to determine the area percent of the test substance's major components in the chamber. The results of the stability analysis, pretest, summary of animal exposures and individual animal exposures are presented in Tables I, II, III and IVA-IVC. Typical chromatograms of Groups 1, 2, 3, and 4 are presented in Figures I to IV.

Huntingdon Life Sciences	05-4287	Page 6 Final Report
	Analvtical Report	Appendix A

Table I. Chamber Components ConfirmationArea Percent of Gasoline DIPE Vapor Condensate Test Substance StabilityPretest

Compound	Mean TM Std-1 for 00-4205 ^a	Mean TM Std-2 00-4205 ^a	TM Std-1 05-4287 ^b	TM Std-2 05-4287 ^b	
Isobutane	1.61			1.42	
N-Butane	9.57	9.59	9.05	9.25	
3-Methyl-1-butene	0.35	0.34	0.34	0.34	
Isopentane	32.26	32.35	32.58	32.50	
N-Pentane	7.38	7.46	9.99	9.93	
Trans-2-pentene	1.11	1.14	2.16	2.16	
2,3-Dimethylbutane	1.76	1.78	1.10	1.08	
2-Methylpentane	5.31	5.29	5.00	5.45	
3-Methylpentane	3.21	3.20	3.23	3.16	
N-hexane & DIPE	22.24	22.16	22.17	21.78	
Methylcyclopentane	1.44	1.43	1.44	1.39	
2,4-Dimethylpentane	1.16	1.17	0.93	1.15	
Benzene	2.29	2.28	2.20	2.18	
2-Methylhexane	1.33	1.32	1.33	1.26	
2,3-Dimethylpentane	1.38	1.37	1.38	1.35	
3-Methylhexane	1.54	1.53	1.49	1.48	
Isooctane	1.71	1.69	1.65	1.58	
Toluene	3.08	3.09	2.43	2.34	
Total	98.73	98.79	99.81	99.80	

Area %

ND = none detected. <LOQ = Less than the limit of quantification = less than 25% of the area count of the component in the test substance standard.

^a These values are obtained from the Summary report for Study 00-4205.

^b These values are obtained from standard injections made on 31 March 2005 for DIPE test substance stability (see Sequence # 001 in 05-4287).

Note: The discrepancy in the N-Pentane and Trans-2-pentene values are due to the analytical columns used for each study analyses. The analytical column used for Study 00-4205 analyses produced a split peak for N-Pentane and Trans-2-pentene but the column used for this study separated the two peaks entirely.

Page 7 Final Report

1.2		4
	Analytical Report	Appendix A

Table II. Chamber Components Confirmation Area Percent of Gasoline DIPE Vapor Condensate Pretest /Trials

	DIPE STD (Tank #4)	DIPE STD (Tank #5)	Spiked Control 1	Spiked Control 2	Sample 101	Sample 201	Sample 301	Sample 401
Compound	002_008	002_009	002_005	002_006	002_007	002_002	002_003	002_004
Isobutane	1.40	1.59	1.44	1.45	ND	1.52	1.73	1.64
N-Butane	9.30	9.70	9.41	9.52	ND	9.62	10.55	10.19
3-Methyl-1-butene	0.36	0.35	0.36	0.35	ND	0.36	0.35	0.36
Isopentane	32.61	32.29	32.74	33.00	ND	32.08	32.85	32.85
N-Pentane	10.15	9.81	10.19	10.27	ND	9.99	10.08	10.13
Trans-2-pentene	2.35	2.18	2.43	2.41	ND	2.30	2.25	2.28
2,3-Dimethylbutane	1.70	1.63	1.42	1.40	ND	1.66	1.34	1.37
2-Methylpentane	5.23	5.28	5.24	5.14	ND	5.48	5.17	5.03
3-Methylpentane	3.24	3.19	3.34	3.34	ND	3.24	3.14	3.23
N-hexane & DIPE	19.12	20.13	19.87	19.25	ND	19.64	18.65	19.66
Methylcyclopentane	1.46	1.44	1.15	1.23	ND	1.47	1.41	1.30
2,4-Dimethylpentane	1.22	1.19	1.27	1.20	ND	1.20	1.17	1.22
Benzene	2.32	2.23	2.38	2.32	ND	2.42	2.24	2.31
2-Methylhexane	1.28	1.27	1.34	1.28	ND	1.32	1.21	1.29
2,3-Dimethylpentane	1.28	1.24	1.37	1.32	ND	1.29	1.24	1.26
3-Methylhexane	1.52	1.48	1.59	1.55	ND	1.54	1.49	1.55
Isooctane	1.65	1.50	0.50	1.09	ND	1.58	1.24	0.65
Toluene	3.11	2.93	3.09	3.02	ND	3.22	2.91	2.98
Total	99.30	99.43	99.13	99.14	0.00	99.93	99.02	99.30

ND = none detected, <LOQ = Less than the limit of quantification = less than 25% of the area count of the component in the test substance standard.

Area %

Huntingdon Life Sciences

Page 8 **Final Report**

Analytical Report	Appendix A

Table III. Summary of Chamber Components Confirmation Mean Area Percent of Gasoline DIPE Vapor Condensate (Exposures 4, 11, and 18) Area %

Area %									
Compound	Spiked Control-1	TM Standard-1 (Tank # 5)	Samples Group 1	Samples Group 2	Samples Group 3	Samples Group 4	All Samples ^b	Spiked Control-2	TM Standard-2 (Tank # 5)
Isobutane	0.95	1.21	ND	1.59	1.71	1.44	1.58	1.30	1.48
N-Butane	6.92	7.70	ND	10.43	10.56	9.32	10.10	8.67	9.40
3-Methyl-1-butene	0.37	0.33	ND	0.36	0.36	0.34	0.35	0.37	0.37
Isopentane	30.72	31.26	ND	32.88	32.67	32.50	32.68	32.94	32.07
N-Pentane ^a	9.74 ^a	8.92	ND	9.35	9.29	9.67 ^a	9.44 ^ª	9.05 ^a	9.26 ^a
Trans-2-pentene	а	1.89	ND	2.11	2.08	а	а	а	а
2,3-Dimethylbutane	1.54	1.46	ND	1.47	1.46	1.34	1.42	1.52	1.67
2-Methylpentane	5.72	5.38	ND	5.26	5.06	5.00	5.11	5.56	5.37
3-Methylpentane	3.63	3.55	ND	3.21	3.17	3.20	3.19	3.42	3.26
N-hexane & DIPE	22.50	21.71	ND	19.27	19.62	20.39	19.76	20.90	20.64
Methylcyclopentane	1.67	1.68	ND	1.46	1.43	1.47	1.45	1.59	1.50
2,4-Dimethylpentane	1.44	1.41	ND	1.21	1.18	1.24	1.21	1.34	1.25
Benzene	2.87	2.50	ND	2.31	2.25	2.31	2.29	2.42	2.35
2-Methylhexane	1.66	1.58	ND	1.46	1.27	1.34	1.36	1.48	1.38
2,3-Dimethylpentane	1.58	1.52	ND	1.30	1.27	1.36	1.31	1.51	1.38
3-Methylhexane	1.79	1.73	ND	1.56	1.48	1.54	1.53	1.70	1.56
Isooctane	1.51	1.65	ND	1.31	1.48	1.58	1.46	1.82	1.61
Toluene	3.74	3.70	ND	3.16	2.94	2.91	3.00	3.57	3.23
Total	98.35	99.18	ND	99.70	99.28	96.95	97.24	99.16	97.78

ND = none detected.

^a N-Pentane co-eluted with Trans-2-pentene during the analysis for exposure 11, ^b average of Groups II, III and IV only

Huntingdon Life Sciences	05-4287	Page 9 Final Report
	Analytical Report	Appendix A

Table IV-A: Gasoline DIPE Vapor Condensate Characterization ("Exposure 4")

	DIPE STD 1 (Tank #5)	DIPE STD 2 (Tank #5)	Spiked Control 1	Spiked Control 2	Sample 1001	Sample 2001	Sample 3001	Sample 4001
Compound	003_002	003_009	003_006	003_007	003_008	003_003	003_010 ^a	003_005
Isobutane	1.50	1.45	1.18	1.03	ND	1.98	1.66	1.67
N-Butane	9.07	8.68	7.55	6.26	ND	12.46	10.22	10.32
3-Methyl-1-butene	0.37	0.34	0.32	0.30	ND	0.38	0.37	0.36
Isopentane	32.26	32.02	30.69	30.24	ND	32.72	32.80	32.45
N-Pentane	9.62	9.56	9.36	8.99	ND	9.51	10.14	9.99
Trans-2-pentene	2.17	2.13	2.14	2.07	ND	2.23	2.32	2.28
2,3-Dimethylbutane	1.65	1.54	1.53	1.57	ND	1.36	1.39	1.50
2-Methylpentane	5.28	5.42	5.52	5.85	ND	4.36	5.09	5.11
3-Methylpentane	3.29	3.40	3.43	3.71	ND	2.80	3.21	3.11
N-hexane & DIPE	20.26	20.25	21.94	20.90	ND	18.42	19.25	19.67
Methylcyclopentane	1.50	1.58	1.62	1.85	ND	1.28	1.47	1.41
2,4-Dimethylpentane	1.28	1.28	1.32	1.50	ND	1.16	1.20	1.17
Benzene	2.34	2.41	2.54	2.88	ND	2.18	2.32	2.24
2-Methylhexane	1.36	1.40	1.48	1.65	ND	1.33	1.25	1.22
2,3-Dimethylpentane	1.36	1.43	1.46	1.75	ND	1.30	1.25	1.26
3-Methylhexane	1.60	1.64	1.73	2.03	ND	1.57	1.49	1.45
Isooctane	1.43	1.66	1.82	2.23	ND	1.37	1.50	1.41
Toluene	3.19	3.36	3.73	4.70	ND	3.39	3.05	2.87
Total	99.53	99.55	99.36	99.51	0.00	99.80	99.98	99.49

Area %

ND = none detected, ^a Resample results

Huntingdon Life Sciences	05-4287	Page 10
		Final Report
	Analytical Report	Appendix A

Table IV-B: Gasoline DIPE Vapor Condensate Characterization ("Exposure 11")

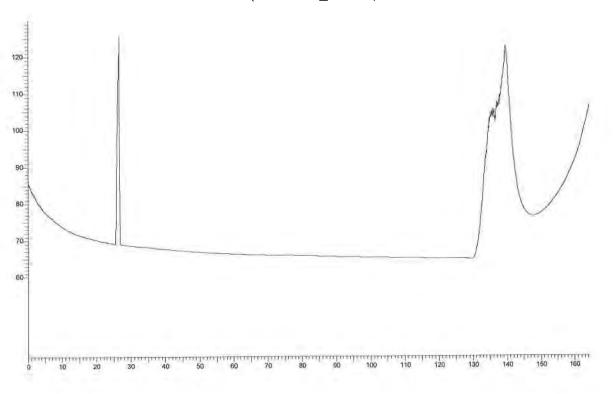
	DIPE STD 1 (Tank #5)	DIPE STD 2 (Tank #5)	Spiked Control 1	Spiked Control 2	Sample 1002	Sample 2002	Sample 3002	Sample 4002
Compound	004_001	004_008	004_005	004_006	004_007	004_002	004_003	004_004
Isobutane	1.18	1.50	0.90	1.36	ND	0.99	1.86	1.21
N-Butane	6.84	9.32	7.17	9.65	ND	7.21	10.76	8.24
3-Methyl-1-butene	0.32	0.45	0.37	0.44	ND	0.33	0.36	0.31
Isopentane	30.09	31.63	30.61	32.93	ND	32.12	32.39	31.99
N-Pentane	8.81	10.11ª	11.54ª	10.23 ^a	ND	10.57	9.81	10.78 ^a
Trans-2-pentene	1.96	a	а	a	ND	2.37	2.19	а
2,3-Dimethylbutane	1.57	1.73	1.80	1.48	ND	1.61	1.34	1.15
2-Methylpentane	5.67	5.33	5.76	5.16	ND	6.03	5.04	4.96
3-Methylpentane	3.59	3.21	3.78	3.39	ND	3.77	3.09	3.34
N-hexane & DIPE	22.48	21.18	21.85	20.75	ND	19.63	19.52	20.55
Methylcyclopentane	1.75	1.48	1.76	1.56	ND	1.72	1.42	1.61
2,4-Dimethylpentane	1.46	1.25	1.50	1.32	ND	1.34	1.15	1.34
Benzene	2.69	2.39	2.85	2.38	ND	2.63	2.25	2.54
2-Methylhexane	1.62	1.37	1.63	1.47	ND	1.53	1.23	1.51
2,3-Dimethylpentane	1.68	1.39	1.62	1.46	ND	1.40	1.27	1.50
3-Methylhexane	1.91	1.55	1.91	1.64	ND	1.75	1.46	1.68
Isooctane	1.88	1.60	1.16	1.65	ND	1.18	1.42	1.75
Toluene	4.17	3.33	3.75	3.01	ND	3.67	3.03	2.96
Total	99.67	98.82	99.96	99.88	0.00	99.85	99.59	97.42

Area %

^a N-pentane and Trans-2-pentene are coeluted.. ND = None Detected

Huntingdon Life Sciences	05-4287	Page 11
		Final Report
	Analytical Report	Appendix A

Table IV-C: Gasoline DIPE Vapor Condensate Characterization ("Exposure 18")

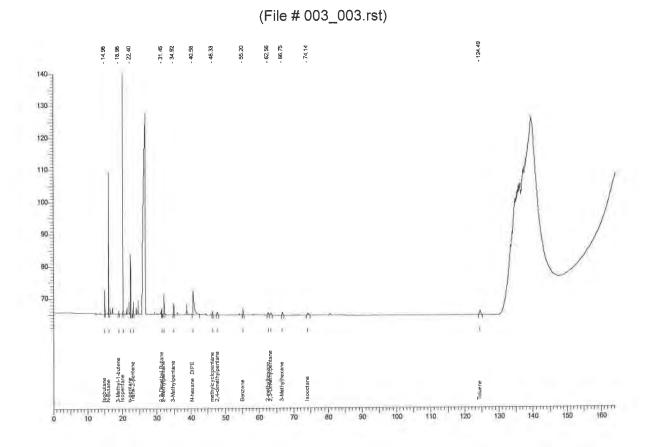

	DIPE STD 1 (Tank #5)	DIPE STD 2 (Tank #5)	Spiked Control 1	Spiked Control 2	Sample 1003	Sample 2003	Sample 3003	Sample 4003
Compound	005_002	005_009	005_001	005_007	005_008	005_004	005_005	005_006
Isobutane	0.95	1.50	0.77	1.52	ND	1.79	1.60	1.44
N-Butane	7.20	10.19	6.03	10.11	ND	11.62	10.69	9.41
3-Methyl-1-butene	0.31	0.32	0.41	0.36	ND	0.36	0.34	0.35
Isopentane	31.42	32.57	30.87	32.65	ND	33.79	32.83	33.07
N-Pentane	8.32	8.10	8.31	7.92	ND	7.97	7.92	8.24
Trans-2-pentene	1.55	2.15	1.95	1.66	ND	1.73	1.72	1.91
2,3-Dimethylbutane	1.17	1.75	1.28	1.51	ND	1.45	1.66	1.37
2-Methylpentane	5.19	5.35	5.87	5.68	ND	5.38	5.05	4.94
3-Methylpentane	3.76	3.17	3.68	3.17	ND	3.07	3.20	3.16
N-hexane & DIPE	22.38	20.49	23.71	21.04	ND	19.75	20.09	20.94
Methylcyclopentane	1.80	1.43	1.64	1.36	ND	1.37	1.41	1.38
2,4-Dimethylpentane	1.50	1.21	1.49	1.21	ND	1.12	1.19	1.20
Benzene	2.48	2.26	3.23	2.01	ND	2.11	2.19	2.15
2-Methylhexane	1.73	1.36	1.88	1.31	ND	1.22	1.32	1.30
2,3-Dimethylpentane	1.52	1.33	1.66	1.32	ND	1.21	1.30	1.32
3-Methylhexane	1.68	1.48	1.74	1.44	ND	1.35	1.48	1.49
Isooctane	1.65	1.58	1.54	1.59	ND	1.37	1.53	1.59
Toluene	3.73	2.99	3.73	3.00	ND	2.41	2.74	2.90
Total	98.34	99.23	99.79	99.86	0.00	99.07	98.26	98.16

Area %

^a N-pentane and Trans-2-pentene are co-eluted. ND = None Detected

Huntingdon Life Sciences	05-4287	Page 12 Final Report
	Analytical Report	Appendix A

Figure I. A Typical Gas Chromatogram of Group 1 (Air Control) Chamber Sample

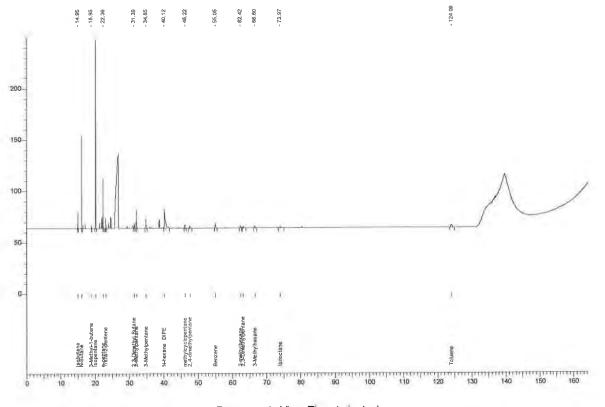


(File # 003_008.rst)

Response (mV) vs Time (minutes)

Huntingdon Life Sciences	05-4287	Page 13 Final Report
	Analytical Report	Appendix A

Figure II. A Typical Gas Chromatogram of Group 2 (G/DIPE VC) Chamber Sample



Response (mV) vs Time (minutes)

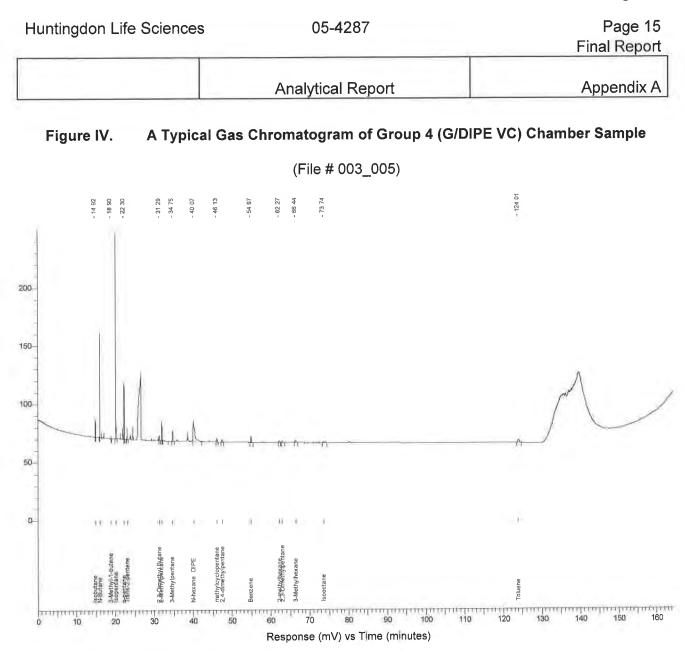

Huntingdon Life Sciences	05-4287	Page 14 Final Report
	Analytical Report	Appendix A

Figure III. A Typical Gas Chromatogram of Group 3 (G/DIPE VC) Chamber Sample

(File # 003_010.rst)

Response (mV) vs Time (minutes)

05-4287 211-DIPE-DEV

1

		Appendix B										
	TABLE OF CONTENTS											
1.	INTRO	DUCTION	63									
2.	MATE	RIALS AND METHODS										
	2.2.	Husbandry During Exposure Periods Test Substance Administration and Chamber Operation Exposure Concentration Determination	ns64									
3.	FIGUR	RES										
		Chamber Generation System and Whole-Body Exposure Chamber (Group 1) Chamber Generation System and	70									
		Whole-Body Exposure Chambers (Groups 2 – 4)	71									
4.	TABLI	ES										
	I.	Summary of In-Chamber Observations	72									
	II.	Chamber Monitoring Results										
	III.	Equipment List	77									
	IV.	Chamber Distribution Records	80									
		Miran Calibration										
	VI.	Testing Room and Chambers Environmental Monitorin	ng84									

 	211-DIPE-DEV	Final Report
	Inhalation Report	Appendix B

05-4287

1. INTRODUCTION

Huntingdon Life Sciences

This appendix presents the methodology for exposure generation, monitoring and results.

2. MATERIALS AND METHODS

2.1. HUSBANDRY DURING EXPOSURE PERIODS

2.1.1. HOUSING

Animals were individually housed in stainless steel wire mesh cages within a 1000 Liter glass and stainless steel whole-body exposure chamber. The placement of the animals in the whole-body exposure chamber was rotated daily to ensure uniform exposure of the animals. A description of the animal rotation is included in the raw data.

Page 63

2.1.2. FEED

None was provided during exposure.

2.1.3. WATER

None was provided during exposure.

2.1.4. ENVIRONMENTAL CONDITIONS

Chamber temperature and relative humidity were recorded every half-hour during exposure and maintained, to the maximum extent possible, within the ranges presented below. Excursions outside the specified range did not affect the integrity of the study.

Temperature

Desired:	20 to 24°C
Actual:	20 to 25°C

Г

05-4287 211-DIPE-DEV

٦

Inhalation Report	Appendix B

The daily average temperature within the chamber was outside the desired range on 7/19 days and 12/19 days for Groups I and III, respectively.

Relative Humidity

Desired:40 to 60%Actual:36 to 54%

The daily average relative humidity within the chamber was outside the desired range on 2/19 days and 1/19 days for Groups I and III, respectively.

2.2. TEST SUBSTANCE ADMINISTRATION AND CHAMBER OPERATIONS

2.2.1. ROUTE OF ADMINISTRATION

Inhalation via whole-body exposures.

2.2.2. TEST SUBSTANCE ADMINISTRATION

The test substance was administered once daily as a vapor in the breathing air of the animals. The test atmosphere was generated by an appropriate procedure determined during pre-study trials. The trials were performed to evaluate the optimal set of conditions and equipment to generate a stable and uniform atmosphere at the target exposure levels. The method was described in the raw data of the study and is outlined in this report.

2.2.3. TARGET EXPOSURE LEVELS

Group 1 - 0 mg/m³ Group 2 - 2000 mg/m³ Group 3 - 10000 mg/m³ Group 4 - 20000 mg/m³

Inhalation Report	Appendix B

2.2.4. DURATION AND FREQUENCY OF ADMINISTRATION

The test substance was administered once daily for 6 hours/day, 7 days per week for Gestation Days (GD) 5-20.

2.2.5. CHAMBER OPERATIONS

The whole-body exposure chambers each had a volume of approximately 1000 Liters. The chambers were operated at a minimum flow rate of 200 Liters per minute. The final airflow was set to provide at least one air change (calculated by dividing the chamber volume by the airflow rate) in 5.0 minutes (12 air changes/hour) and a T_{99} equilibrium time (calculated by multiplying the air change by the exponential factor 4.6) of at most 21-22 minutes. Initial settings for each group were as follows:

Group	Airflow Rate (Lpm)	Air Change (min)	T99 (min)
1	210	4.7	22
2	208	4.8	22
3	216	4.6	21
4	210	4.7	22

The chamber atmospheres were exhausted through the in-house filtering system, which consisted of a coarse filter, a HEPA filter, and an activated charcoal bed.

Chamber static pressure was recorded every half-hour during exposure. The chambers were operated for a minumum of 23 minutes (approximate T_{99}) following the exposure with clean air only to allow the atmosphere to clear.

Refer to Figures 1 and 2, and Table III for equipment details.

Inhalation Report	Appendix B

2.2.6. EXPOSURE PROCEDURE

Group 1

Houseline nitrogen was delivered from a regulator with a backpressure gauge via ¹/₄" tubing to a flowmeter regulated by a metering valve. This nitrogen flow was then directed into the turret of the 1000 Liter glass and stainless steel exposure chamber where it was mixed with room air as it was drawn into the chamber. This nitrogen flow simulated the generation nitrogen flow for Groups 2, 3 and 4.

Groups 2-4

Houseline nitrogen was delivered from a regulator with a backpressure gauge through a stainless steel cross to create three flow systems: the test substance pressurization flow, the purge flow and the volatilization flow.

The test substance pressurization flow was directed via ¹/4" tubing through a metering valve, attached to a backpressure gauge, into the vapor inlet valve of the test substance cylinder. The metering valve was used to adjust and maintain the pressure within the cylinder. From the pressurized cylinder, the test substance flowed from the liquid outlet valve through a quick-disconnect fitting and through a filter to prevent equipment contamination. From the filter tube, the test substance flowed to a liquid flowmeter via ¹/₈" tubing. The outlet of the flowmeter was regulated by a built-in metering valve. From this flowmeter and metering valve, the test substance flowed via ¹/₈" tubing onto the glass helix of a counter current volatilization chamber. The glass helix was heated by a nichrome wire, which was controlled by an autotransformer and was inserted in the center of the glass tube that supported the helix.

The nitrogen for the purge flow system was directed, via ¹/₄" tubing to a flowmeter regulated by a metering valve. The purge nitrogen was delivered via $^{1}/_{8}$ " tubing to the bottom of the tube containing the nichrome wire. This nitrogen flow continuously purged the

Inhalation Report	Appendix B

area surrounding the nichrome wire within the tube, thereby protecting the wire from oxidation.

The nitrogen for the volatilization system was directed via ¹/4" tubing to a flowmeter regulated by a metering valve. From the flowmeter, the volatilization nitrogen flowed via ¹/4" tubing to a ball and socket joint at the bottom of the volatilization chamber. This nitrogen flowed up through the volatilization chamber passing over the coil and volatilizing the test substance. The pressure within the counter-current volatilization chamber was maintained slightly negative to the room and was monitored with a pressure gauge.

This test substance laden nitrogen exited the top of the volatilization chamber through a glass elbow, which directed the flow, via $\frac{1}{2}$ " tubing, to the turret of 1000 Liter glass and stainless steel exposure chamber. As the test substance laden nitrogen was drawn into the chamber, it was mixed with room air.

Refer to Figures 1 and 2, and Table III for equipment details.

2.3. EXPOSURE CONCENTRATION DETERMINATION

2.3.1. NOMINAL CONCENTRATION

A nominal exposure concentration was calculated daily. The flow of air through the chambers was monitored using appropriate calibrated equipment. The nominal concentrations in mg/m^3 were determined by weighing the generation apparatus containing the test substance before and after the exposure and dividing the difference in these weights by the total volume of air used during the exposure (flowrate multiplied by total exposure time).

Calculation

Conc $(mg/m^3) =$ <u>amount consumed (g) x 1000 mg/g x 1000 L/m³</u> exposure duration (min) x airflow (Lpm)

Inhalation Report	Appendix B

2.3.2. CHAMBER SAMPLING

Determinations of the exposure levels were made using a MIRAN[®] Ambient Air analyzer equipped with a strip chart recorder. The test atmosphere was drawn from the normal sampling portal through the MIRAN[®] and measurements were recorded at least 4 times during each exposure. The exposure levels were determined by comparison of the measured absorbance to a calibrated response curve constructed using the same instrument settings.

Also, one charcoal tube sample per chamber per week was analyzed by gas chromatography (GC) to characterized at least 10 major components (comprising at least 80% by weight of the test substance) to show test substance stability and comparison between the neat liquid test substance and the vaporized test atmospheres.

See Table III for equipment list.

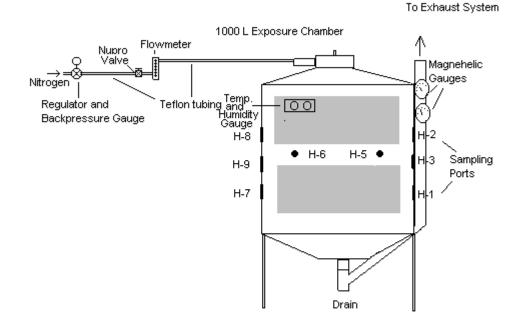
2.3.3. PARTICLE SIZE DISTRIBUTION

Particle size distribution measurements were performed once during each week of exposure using a TSI Aerodynamic Particle Sizer. The samples were drawn for 20 seconds at a rate of 5.0 Lpm. A computer was used to program the system to the appropriate settings prior to sampling. The particle size distributions were calculated by the computer and printed out. The mass median aerodynamic diameter, geometric standard deviation and total mass concentration were calculated. For comparison, room air samples were similarly collected at least once weekly.

2.3.4. CHAMBER AND EXPOSURE ROOM ENVIRONMENT

Chamber oxygen levels (maintained at least 19%) were measured pretest and at the beginning (Day 3), middle (Day 12) and end of the study (Day 19).

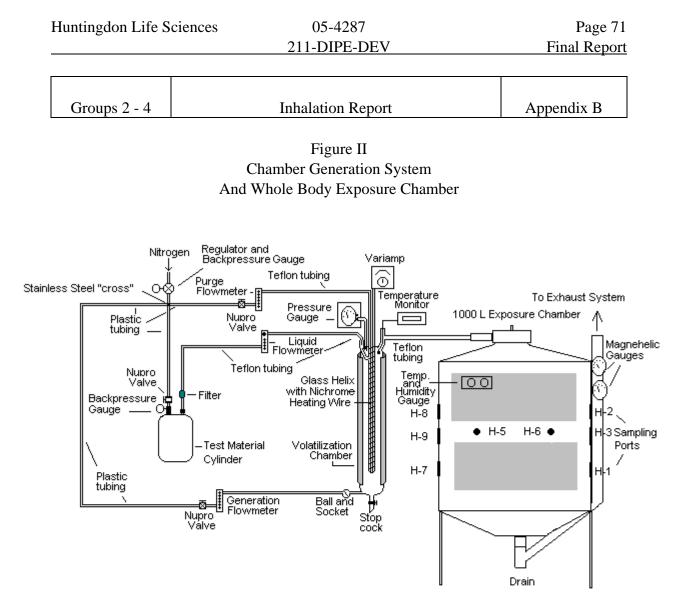
Huntingdon Life Sciences	05-4287	Page 69
	211-DIPE-DEV	Final Report
		-
	Inhalation Report	Appendix B


Air samples were taken in the vapor generation area pretest and at the beginning (Day 3), middle (Day 12) and end of the study (Day 19). Light (maintained approximately 30 to 40 foot-candles at 1.0 meters above the floor) and noise levels (maintained below 85 decibels) in the exposure room were measured pretest and at the beginning (Day 3), middle (Day 12) and end of the study (Day 19).

	Final Report	
Group 1	Inhalation Report	Appendix B

05-4287

Page 70


Figure I Chamber Generation System And Whole Body Exposure Chamber

Note:

Huntingdon Life Sciences

1. Animals were individually housed on two levels within the exposure chamber.

Notes:

1. Animals were individually housed on two levels within the exposure chamber.

Huntingdon Life Sciences	s 05-4287 211-DIPE-DEV									Page 72 Final Report												
						In	halat	tion	Repo	ort								А	ppenc	lix B		
				e L	Sumi	mary	of I		ble I amb		bser	vatio	ons									
Exposure Day	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19			
Group $1 - 0 \text{ mg/m}^3$																						
Within Normal Limits	6	12	18	24	24	24	24	24	24	24	24	24	24	24	24	24	18	12	6			
Group 2 – 2000 mg/m ³																						
Within Normal Limits	6	12	18	24	24	24	24	24	24	24	24	24	24	24	24	24	18	12	6			
Group 3 – 10000 mg/m ³																						
Within Normal Limits	6	12	18	24	24	24	24	24	24	24	24	24	24	24	24	24	18	12	6			
Group 4 – 20000 mg/m ³																						
Within Normal Limits	6	12	18	24	24	24	24	24	24	24	24	24	24	24	24	24	18	12	6			

Page 73 Final Report

					Cum	mber M ulative up 1 - 0	Expos	ure Re	cord				
												Chamber Env	vironment
									1	Particle S	lize	Mean	n
Day	Date	Exposure		Cha	mber (Concent			D	etermina		Temperature	Humidity
		Number	Nominal	Mean		Indiv			MMAD	GSD	TMC		
			(mg/m ³)	(mg/m ³)		(mg			(µm)		(mg/m ³)	(°C)	(%)
0	6-Aug-05	1	0	0.00	0.00	0.00	0.00	0.00				23	42
1	7-Aug-05	2	0	0.00	0.00	0.00	0.00	0.00				23	41
2	8-Aug-05	3	0	0.00	0.00	0.00	0.00	0.00				24	39
3	9-Aug-05	4	0	0.00	0.00	0.00	0.00	0.00	0.8011	2.031	4.25E-03	24	40
4	10-Aug-05	5	0	0.00	0.00	0.00	0.00	0.00				24	41
5	11-Aug-05	6	0	0.00	0.00	0.00	0.00	0.00				24	40
6	12-Aug-05	7	0	0.00	0.00	0.00	0.00	0.00				25	40
7	13-Aug-05	8	0	0.00	0.00	0.00	0.00	0.00				25	42
8	14-Aug-05	9	0	0.00	0.00	0.00	0.00	0.00				24	43
9	15-Aug-05	10	0	0.00	0.00	0.00	0.00	0.00				25	39
10	16-Aug-05	11	0	0.00	0.00	0.00	0.00	0.00	0.7675	1.792	4.78E-03	24	40
11	17-Aug-05	12	0	0.00	0.00	0.00	0.00	0.00				25	40
12	18-Aug-05	13	0	0.00	0.00	0.00	0.00	0.00				25	40
13	19-Aug-05	14	0	0.00	0.00	0.00	0.00	0.00				25	40
14	20-Aug-05	15	0	0.00	0.00	0.00	0.00	0.00				24	40
15	21-Aug-05	16	0	0.00	0.00	0.00	0.00	0.00				25	40
16	22-Aug-05	17	0	0.00	0.00	0.00	0.00	0.00				24	40
17	23-Aug-05	18	0	0.00	0.00	0.00	0.00	0.00	8.2210	2.276	1.64E-03	24	41
18	24-Aug-05	19	0	0.00	0.00	0.00	0.00	0.00				23	41
		Mean	0			0.00			3.263	2.033	3.56E-03	24	40
		S.D.	0			0.00			4.3	0.2	0.0	0.7	1.0

Page 74 Final Report

					Cum	mber M ulative Group 2	Exposu	ire Reco					
												Chamber En	vironment
]	Particle S	ize	Mean	n
Day	Date	Exposure		Cha	amber (Concent	ration		D	eterminat	ions	Temperature	Humidity
		Number	Nominal	Mean		Indiv	idual		MMAD	GSD	TMC		· · ·
			(mg/m ³)	(mg/m ³)		(mg	/m ³)		(µm)		(mg/m ³)	(°C)	(%)
0	6-Aug-05	1	2000	1900	1800	1800	1900	1900				23	43
1	7-Aug-05	2	2000	1900	2000	1900	1800	1900				23	42
2	8-Aug-05	3	2000	2000	2200	1800	2000	2000				23	40
3	9-Aug-05	4	2100	2100	2200	2000	2000	2000	3.882	2.954	7.23E-03	24	41
4	10-Aug-05	5	2000	2000	2100	2000	1900	2100				24	43
5	11-Aug-05	6	2000	2000	2000	2200	2100	1800				24	42
6	12-Aug-05	7	2000	2000	2100	2000	2000	2000				24	41
7	13-Aug-05	8	2000	2000	2000	1900	2000	2000				24	43
8	14-Aug-05	9	2000	2000	1900	2000	2000	2000				24	45
9	15-Aug-05	10	2000	2000	2100	2000	2000	2000				24	41
10	16-Aug-05	11	1900	2000	2000	2000	2000	1900	0.7935	2.294	6.14E-03	24	42
11	17-Aug-05	12	2000	2000	2000	1900	2100	2100				24	41
12	18-Aug-05	13	2000	2000	1900	1900	2000	2000				24	42
13	19-Aug-05	14	2000	2000	1900	2100	2000	2000				24	42
14	20-Aug-05	15	1900	2000	2000	1800	2000	2000				24	42
15	21-Aug-05	16	2000	2000	2000	1900	2100	2000				24	42
16	22-Aug-05	17	2000	1900	1900	1900	1900	2000				24	42
17	23-Aug-05	18	2000	2000	2000	1900	2000	2000	7.508	2.057	2.08E-03	23	43
18	24-Aug-05	19	2000	2000	2100	1800	2000	2100				23	42
		Mean	1995			1982			4.061	2.435	5.15E-03	24	42
		S.D.	40			93			3.4	0.5	0.0	0.5	1.1

Page 75 Final Report

					Cu	amber M mulative Group 3	Exposur	e Record					
												Chamber En	vironment
									1	Particle S	ize	Mean	n
Day	Date	Exposure		(Chamber	Concent	ration		D	eterminat	ions	Temperature	Humidity
		Number	Nominal	Mean		Indiv	idual		MMAD	GSD	TMC		
			(mg/m ³)	(mg/m³)		(mg	/m ³)		(µm)		(mg/m ³)	(°C)	(%)
0	6-Aug-05	1	11000	10000	10000	9600	10000	11000				23	42
1	7-Aug-05	2	11000	9800	9400	9700	10000	9900				24	41
2	8-Aug-05	3	11000	9900	10000	10000	9800	9900				24	41
3	9-Aug-05	4	11000	9600	9300	9500	9700	9900	0.8112	2.450	5.75E-03	24	41
4	10-Aug-05	5	12000	10000	11000	10000	10000	10000				25	41
5	11-Aug-05	6	12000	10000	9700	9900	9400	11000				25	41
6	12-Aug-05	7	11000	9700	9900	9600	9400	9700				25	40
7	13-Aug-05	8	12000	10000	10000	10000	10000	10000				25	42
8	14-Aug-05	9	12000	9800	9700	10000	10000	9400				25	44
9	15-Aug-05	10	12000	9800	9600	9900	9700	10000				25	40
10	16-Aug-05	11	12000	10000	9900	9800	11000	11000	4.952	3.334	1.07E-02	25	41
11	17-Aug-05	12	12000	10000	10000	10000	10000	10000				25	40
12	18-Aug-05	13	11000	10000	10000	10000	10000	10000				25	39
13	19-Aug-05	14	11000	9800	9600	9700	9900	9900				25	42
14	20-Aug-05	15	12000	10000	11000	9700	9700	10000				25	42
15	21-Aug-05	16	12000	11000	11000	11000	11000	10000				25	42
16	22-Aug-05	17	11000	10000	11000	10000	10000	10000				24	40
17	23-Aug-05	18	11000	10000	11000	9100	9600	11000	5.523	2.246	1.91E-03	24	41
18	24-Aug-05	19	11000	11000	11000	12000	10000	11000				23	41
		Mean	11474			10072			3.762	2.677	6.12E-03	25	41
		S.D.	513			546			2.6	0.6	0.0	0.7	1.1

Page 76 Final Report

						amber M mulative Group 4	Exposur	e Record					
												Chamber Env	vironment
]	Particle S	ize	Mean	1
Day	Date	Exposure		(Chamber	Concent	ration		D	etermina	tions	Temperature	Humidity
		Number	Nominal	Mean		Indiv	idual		MMAD	GSD	ТМС		
			(mg/m ³)	(mg/m³)		(mg	/m ³)		(µm)		(mg/m ³)	(°C)	(%)
0	6-Aug-05	1	20000	19000	18000	20000	20000	19000				23	42
1	7-Aug-05	2	21000	21000	19000	20000	22000	21000				23	41
2	8-Aug-05	3	19000	20000	21000	20000	19000	19000				24	40
3	9-Aug-05	4	21000	20000	21000	20000	20000	20000	0.7811	2.137	4.84E-03	24	40
4	10-Aug-05	5	20000	20000	18000	18000	22000	20000				24	41
5	11-Aug-05	6	20000	20000	18000	20000	21000	20000				24	41
6	12-Aug-05	7	20000	20000	19000	20000	20000	20000				24	41
7	13-Aug-05	8	20000	20000	19000	19000	19000	21000				24	44
8	14-Aug-05	9	19000	19000	21000	20000	18000	18000				24	45
9	15-Aug-05	10	20000	20000	20000	20000	19000	19000				24	41
10	16-Aug-05	11	19000	20000	20000	20000	19000	19000	0.7640	2.260	9.80E-03	24	41
11	17-Aug-05	12	20000	21000	21000	21000	21000	20000				24	41
12	18-Aug-05	13	20000	20000	19000	20000	20000	20000				24	41
13	19-Aug-05	14	20000	20000	20000	21000	18000	21000				24	42
14	20-Aug-05	15	19000	20000	19000	20000	20000	20000				24	42
15	21-Aug-05	16	19000	20000	20000	19000	20000	19000				24	42
16	22-Aug-05	17	20000	20000	21000	20000	20000	20000				24	40
17	23-Aug-05	18	20000	20000	20000	20000	20000	20000	7.810	2.272	4.24E-03	23	41
18	24-Aug-05	19	20000	19000	17000	20000	20000	20000				23	40
		Mean	19842			19776			3.118	2.223	6.29E-03	24	41
		S.D.	602			961			3.3	0.1	0.0	0.4	1.3

Page 77 Final Report

Inhalation Report	Appendix B
^	<u> </u>

Table III Equipment List

Exposure Chamber

1000 Liter glass and stainless steel chamber (Wahmann).

Compound Reservoir

Sponsor cylinder (100 gallons) and smaller cylinders (5 gallons) filled from Sponsor cylinder and used on study.

Compound Generator

Counter-Current Volatilization Unit, coiled glass rod insert, (Crown Glass Co., Inc. heated by a nichrome wire).

Flowmeters

Flowmeter, size 0-5, 0-20, 0-40 Lpm (Dwyer[®] Instruments Inc.).

Top Trak[™] Mass Flow Meter size 0-1 Lpm, Model 821-1 (Sierra Instruments), calibrated prestudy with a Gilibrator[®]Bubble Generator, P/N D800286, S/N 569-S, flow cell assembly P/N D80026B, BD #1860).

Flowmeter, size 0 – 65 mm, P/N G6-02-R3, G6-03-R3, G6-04-R3 (Key Instruments).

Pressure/Vacuum Gauges

Union Carbide backpressure gauge, P/N SG 6383. Norgreen backpressure gauge, P/N 9892K23. U.S. Gauge backpressure gauge, P/N 12672-1. Ashcroft backpressure gauge, P/N 733-47. Matheson[®] backpressure gauge, P/N 63-3161. Dwyer[®] Magnehelic[®] gauge.

Variable Auto Transformer

Variable Autotransformer, Type 3PN 1010 (Staco Energy Products Company).

Chamber Air Flow

Dwyer[®] Magnehelic[®] gauge (Dwyer[®] Instruments Inc.), calibrated prestudy with a Dry Gas Meter, Model 8586799, (Singer).

Chamber Static Pressure

Dwyer[®] Magnehelic[®] gauge (Dwyer[®] Instruments Inc.), calibrated prestudy with Dwyer[®] Mark II Manometer, Model 25 (Dwyer[®] Instruments, Inc.).

Page 78 Final Report

Inhalation Report	Appendix B

Table III Equipment List

Regulators

Norgreen, P/N 9892K23 Union Carbide, P/N SG 3800 30.

Metering Valve

Metering Valve, Model SS-4L (Nupro[®] Co.).

Timers

Gralab Universal Timer, Model 171.

Absorbent Tube Sampling

Charcoal Tubes, ORBO-32, Lot #2000 (Supelco).

Vacuum Pumps

Thomas Industries Inc., Model 707CM50. Neptune Dyna-pump[®], Model 4K.

Tubing

Clear plastic, sizes 3/16", ¼", ½" (Norton, Baxter). ½" stainless steel. Stainless steel cross(Swage). Teflon[®], size 1/8", ¼", ½". Plastic "T".

Air Analyzer

MIRAN[®] 1A-CVF Ambient Air Analyzer (Wilks) with a Cole Parmer Strip Chart Recorder, Model 201, and a Micronta[®] LCD Benchtop Digital Multimeter, Model No. 22-195

Balston[®] Microfibre[™] Disposable Filter Unit was attached in-line. Syringe, size 0 - 25 mL, Gas-tight No. 1025 (Hamilton).

Particle Sizer

TSI Aerodynamic Particle Sizer, Model 331001, and a DELL computer, Model 486P/25, equipped with an Epson LQ-5707 printer, Model P630B.

Page 79 Final Report

Inhalation Report Appendix

Table III Equipment List

Environmental Monitoring

VWR Temperature and Humidity Gauge, tested prestudy with a Big Digit Traceable Hygrometer/Thermometer.Digital Sound Meter 840029 (SPER Scientific)Quantum Instruments Photo Meter 1.Oxygen/Gas Analyzer, Model 1214S (Gastech)

Thermometer

T° Sentry Digital Alarm Module, Model 110.

Balance

Pelouze, No. 4040 Mettler PM30000K (Mettler Instrument Corporation).

Miscellaneous

Quick-disconnect fitting with toggle valve (REGO[®]). DFU[®] filter, Grade DQ (Balston).

05-4287 211-DIPE-DEV Page 80 <u>Final Report</u>

Inhalation Report	Appendix B
minalation Report	Appendix D

Table IV Chamber Distribution Records

Group			Analytical (IR) Concentration	
(target)	Date	Port	(mg/m3)	Ratio to H-1
$2 (2000 \text{ mg/m}^3)$	02 August 2005	H-1	1900	1.00
	C	H-2	2000	1.05
		H-1	2100	1.00
		H-7	2100	1.00
		H-8	2000	0.95
$3 (10000 \text{ mg/m}^3)$	02 August 2005	H-1	11000	1.00
5 (10000 mg/m)	02 August 2005	H-1 H-2	9900	0.90
		H-1	10000	1.00
		H-7	10000	1.00
		H-8	9900	0.99
$4 (20000 \text{ mg/m}^3)$	02 August 2005	H-1	19000	1.00
()		H-2	19000	1.00
		H-1	19000	1.00
		H-7	19000	1.00
		H-1	20000	1.00
		H-8	20000	1.00

Page 81 Final Report

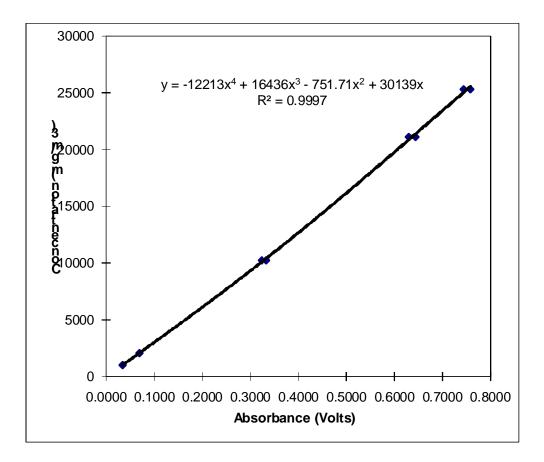
Inhalation Report	Appendix B

Table V Miran Calibration

Methodology for Gasoline DIPE Vapor Condensate

<u>Settings:</u> The instrument settings for the Miran 2225 Unit are summarized below:

10.2
5.30
1
1A
1
High
1
1


<u>Calibrations:</u> The Miran[®] was turned on and allowed to warm up for approximately 10 minutes. The cell was flushed with room air for approximately one minute. The loop was closed, the unit was zeroed and the calibration series was performed as shown below. The resultant data were plotted to obtain a calibration curve. Each observer used a separate syringe for calibration.

Injection	Calculated		Absorbance	
<u>Volume</u>	Concentration ¹	Operator 1	Operator 2	Average
(μL)	(mg/m^3)	(volts)	(volts)	(volts)
8.5	1025	0.0338	0.0331	0.0335
17	2050	0.0681	0.0691	0.0686
85	10248	0.323	0.333	0.328
175	21099	0.630	0.644	0.637
210	25319	0.744	0.758	0.751

¹Calculated Conc. (mg/m³) = <u>Injection volume (μ L) x Density (0.68 mg/ μ L) x 1000 L/m³ 5.64 L (Volume of Miran cell)</u>

Huntingdon Life Sciences	05-4287 211-DIPE-DEV	Page 82 Final Report	
	Inhalation Report	Appendix B	

Table V Miran Calibration

211-DIPE-DEV	Final Report
Inhalation Report	Appendix B

05-4287

Page 83

Huntingdon Life Sciences

Table V Miran Calibration

<u>Calibration Checks:</u> A three-point calibration check of the Miran[®] was performed for each exposure prior to sampling the chambers. The parameters are shown below:

		Expected	Acceptable
Injection	Calculated	Absorbance	Absorbance
Volume	Concentration	<u>Reading</u>	Range
(μL)	(mg/m3)	(volts)	(volts)
17	2050	0.0686	0.0583 - 0.0789
85	10248	0.328	0.2788 - 0.377
175	21099	0.637	0.541 - 0.733

The absorbance was recorded after each injection. The absorbance was considered satisfactory if it was within 15% of the original calibration series. If any of the absorbance values fell outside the 15% range, the injection was rechecked as follows. The volume for the value that was out of range was reinjected twice. The closer pair of the three injections were averaged and the results were compared to the original curve. If the average of the pair was within the 15% range, the original was accepted. If the value of the average was outside the 15% range, the Study Director decided if a new graph was to be prepared.

05-4287 211-DIPE-DEV Page 84 Final Report

Inhalation Report	Appendix B

Table VITesting Room and Chambers Environmental Monitoring

Interval	Location	Test Substance (mg/m ³)	Light (Ft Candles)	Noise (dB)	Oxygen (%)	Particle Sizing (mg/m ³) ^a
	D 010 D	0	22.2	(2 0		
Pretest	Room 813 - Front	0	32.3	62.8	-	
	Room 813 - Back	0	38.6	59.5	-	2 2 2 2
	Group 1 Chamber	-	-	-	20	2.23×10^{-2}
	Group 2 Chamber	-	-	-	20	$1.62 \ge 10^{-2}$
	Group 3 Chamber	_	-	-	20	3.29 x 10 ⁻²
	Group 4 Chamber	-	-	-	20	3.30×10^{-2}
Day 3	Room 813 – Front	0	30.0	64.1	_	
2 4 9 6	Room 813 – Back	0	38.0	61.2	_	
	Group 1 Chamber	-	-	-	20	
	Group 2 Chamber	_	_	_	20	
	Group 3 Chamber	_	_	_	20	
	Group 4 Chamber	_	_	-	20	
Day 12	Room 811 – Front	0	30.4	63.8	-	
	Room 811 – Back	0	38.7	59.3	-	
	Group 1 Chamber	-	-	-	20	
	Group 2 Chamber	-	-	-	20	
	Group 3 Chamber	-	-	-	20	
	Group 4 Chamber	-	-	-	20	
Day 19	Room 811 – Front	0	31.1	63.9	_	
Duj 17	Room 811 – Back	0	38.0	60.1	_	
	Group 1 Chamber	-	-	-	20	
	Group 2 Chamber	_	_	-	20	
	Group 3 Chamber	-	_	-	20	
	Group 4 Chamber	-	-	-	20	

^aPretest results presented above. For Weeks 1, 2 and 3 results, see CMR (Table II of Appendix B).

APPENDIX C

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL ANIMAL TERMINATION HISTORY

	TYPE	OF	DATE OF	GESTATION	PREGNANCY	
ANIMAL#	DEAT		DEATH		STATUS	
 1901			22-AUG-05			
			22-AUG-05			
1902			22-AUG-05		P	
1904		SACRIFICE			P	
1905	TERMINAL				P	
1906	TERMINAL			21	P	
1907	TERMINAL				P	
1908	TERMINAL				P	
1909	TERMINAL				P	
1910	TERMINAL	SACRIFICE	23-AUG-05	21	P	
1911	TERMINAL	SACRIFICE	23-AUG-05	21	P	
1912	TERMINAL	SACRIFICE	23-AUG-05	21	P	
1913	TERMINAL	SACRIFICE	24-AUG-05	21	P	
1914	TERMINAL	SACRIFICE	24-AUG-05	21	P	
1915	TERMINAL	SACRIFICE	24-AUG-05	21	NP	
1916	TERMINAL	SACRIFICE	24-AUG-05	21	P	
1917	TERMINAL	SACRIFICE	24-AUG-05	21	P	
1918	TERMINAL	SACRIFICE	24-AUG-05	21	P	
1919	TERMINAL	SACRIFICE	25-AUG-05	21	P	
1920	TERMINAL	SACRIFICE	25-AUG-05	21	P	
1921	TERMINAL	SACRIFICE	25-AUG-05	21	P	
1922	TERMINAL	SACRIFICE			P	
1923	TERMINAL	SACRIFICE	25-AUG-05	21	P	
1924	TERMINAL	SACRIFICE	25-AUG-05	21	P	

NP-NOT PREGNANT, P-PREGNANT

APPENDIX C

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL ANIMAL TERMINATION HISTORY

	TYPE OF	DATE OF	GESTATION	PREGNANCY	
ANIMAL#		DEATH		STATUS	
2901	TERMINAL SACRIFICE	22-AUG-05	21	P	
2902	TERMINAL SACRIFICE	22-AUG-05	21	P	
2903	TERMINAL SACRIFICE				
2904	TERMINAL SACRIFICE	22-AUG-05	21	P	
2905	TERMINAL SACRIFICE	22-AUG-05	21	P	
2906	TERMINAL SACRIFICE	22-AUG-05	21	P	
2907	TERMINAL SACRIFICE	23-AUG-05	21	P	
2908	TERMINAL SACRIFICE	23-AUG-05	21	P	
2909	TERMINAL SACRIFICE	23-AUG-05	21	P	
2910	TERMINAL SACRIFICE	23-AUG-05	21	P	
2911	TERMINAL SACRIFICE	23-AUG-05	21	P	
2912	TERMINAL SACRIFICE	23-AUG-05	21	P	
2913	TERMINAL SACRIFICE	24-AUG-05	21	P	
2914	TERMINAL SACRIFICE	24-AUG-05	21	P	
2915	TERMINAL SACRIFICE	24-AUG-05	21	P	
2916	TERMINAL SACRIFICE	24-AUG-05	21	P	
2917	TERMINAL SACRIFICE	24-AUG-05	21	P	
2918	TERMINAL SACRIFICE	24-AUG-05	21	P	
2919	TERMINAL SACRIFICE	25-AUG-05	21	NP	
2920	TERMINAL SACRIFICE	25-AUG-05	21	P	
2921	TERMINAL SACRIFICE	25-AUG-05	21	P	
2922	TERMINAL SACRIFICE	25-AUG-05	21	P	
2923	TERMINAL SACRIFICE	25-AUG-05	21	P	
2924	TERMINAL SACRIFICE	25-AUG-05	21	Р	

NP-NOT PREGNANT, P-PREGNANT

APPENDIX C

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL ANIMAL TERMINATION HISTORY

	TYPE OF	DATE OF	GESTATION	PREGNANCY	
ANIMAL#	DEATH	DEATH	DAY	STATUS	
 3901	TERMINAL SACRIFICE				
	TERMINAL SACRIFICE				
3903	TERMINAL SACRIFICE			P	
3904				P	
3905		22-AUG-05		P	
3906		22-AUG-05		P	
3907	TERMINAL SACRIFICE	23-AUG-05		P	
3908	TERMINAL SACRIFICE	23-AUG-05	21	P	
3909	TERMINAL SACRIFICE	23-AUG-05	21	P	
3910	TERMINAL SACRIFICE	23-AUG-05	21	P	
3911	TERMINAL SACRIFICE	23-AUG-05	21	P	
3912	TERMINAL SACRIFICE	23-AUG-05	21	P	
3913	TERMINAL SACRIFICE	24-AUG-05	21	P	
3914	TERMINAL SACRIFICE	24-AUG-05	21	P	
3915	TERMINAL SACRIFICE	24-AUG-05	21	P	
3916	TERMINAL SACRIFICE	24-AUG-05	21	P	
3917	TERMINAL SACRIFICE	24-AUG-05	21	P	
3918	TERMINAL SACRIFICE	24-AUG-05	21	P	
3919	TERMINAL SACRIFICE	25-AUG-05	21	P	
3920	TERMINAL SACRIFICE	25-AUG-05	21	P	
3921	TERMINAL SACRIFICE	25-AUG-05	21	P	
3922	TERMINAL SACRIFICE	25-AUG-05	21	P	
3923	TERMINAL SACRIFICE	25-AUG-05	21	P	
3924	TERMINAL SACRIFICE	25-AUG-05	21	P	

NP-NOT PREGNANT, P-PREGNANT

APPENDIX C

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL ANIMAL TERMINATION HISTORY

	TYPE	OF	DATE OF	GESTATION	PREGNANCY	
ANIMAL#	DEAT		DEATH			
4901			 22-AUG-05			
4902	TERMINAL	SACRIFICE	22-AUG-05	21	Р	
4903			22-AUG-05			
4904	TERMINAL	SACRIFICE	22-AUG-05	21	P	
4905	TERMINAL	SACRIFICE			P	
4906	TERMINAL	SACRIFICE	22-AUG-05	21	P	
4907	TERMINAL	SACRIFICE	23-AUG-05	21	P	
4908	TERMINAL	SACRIFICE	23-AUG-05	21	NP	
4909	TERMINAL	SACRIFICE	23-AUG-05	21	P	
4910	TERMINAL	SACRIFICE	23-AUG-05	21	P	
4911	TERMINAL	SACRIFICE	23-AUG-05	21	P	
4912	TERMINAL	SACRIFICE	23-AUG-05	21	P	
4913	TERMINAL	SACRIFICE	24-AUG-05	21	P	
4914	TERMINAL	SACRIFICE	24-AUG-05	21	P	
4915	TERMINAL	SACRIFICE	24-AUG-05	21	P	
4916	TERMINAL	SACRIFICE	24-AUG-05	21	P	
4917	TERMINAL	SACRIFICE	24-AUG-05	21	P	
4918	TERMINAL	SACRIFICE	24-AUG-05	21	P	
4919	TERMINAL	SACRIFICE	25-AUG-05	21	NP	
4920	TERMINAL	SACRIFICE	25-AUG-05	21	P	
4921	TERMINAL	SACRIFICE	25-AUG-05	21	P	
4922	TERMINAL	SACRIFICE	25-AUG-05	21	P	
4923	TERMINAL	SACRIFICE	25-AUG-05	21	P	
4924	TERMINAL	SACRIFICE	25-AUG-05	21	P	

NP-NOT PREGNANT, P-PREGNANT

APPENDIX D

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL CLINICAL OBSERVATIONS DURING GESTATION

|--|--|--|--|--|

FEMALE# OBSERVATIONS GESTATION 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1901 TERMINAL SACRIFICE WITHIN NORMAL LIMITS P <th></th>	
within NORMAL LIMITS P P P P P P P P P P P P P P P P P P P	
within NORMAL LIMITS P P P P P P P P P P P P P P P P P P P	
1902 TERMINAL SACRIFICE WITHIN NORMAL LIMITS P <t< td=""><td></td></t<>	
WITHIN NORMAL LIMITS PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	
WITHIN NORMAL LIMITS PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	
1903 TERMINAL SACRIFICE P	
WITHIN NORMAL LIMITS P P P P P P P P P P P P P P P P P P P	
1904 TERMINAL SACRIFICE P WITHIN NORMAL LIMITS P P P P P P P P P P P P P P P P P P 1905 TERMINAL SACRIFICE WITHIN NORMAL LIMITS P P P P P P P P P P P P P P P P P	
WITHIN NORMAL LIMITS PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	
WITHIN NORMAL LIMITS PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	
1905 TERMINAL SACRIFICE P WITHIN NORMAL LIMITS PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	
WITHIN NORMAL LIMITS PPPPPPPPPPPPPPPP	
WITHIN NORMAL LIMITS PPPPPPPPPPPPPPPP	
1906 TERMINAL SACRIFICE P	
WITHIN NORMAL LIMITS PPPPPPPPPPPPP	
1907 TERMINAL SACRIFICE P	
1907 TERMINAL SACRIFICE P WITHIN NORMAL LIMITS PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	
1908 TERMINAL SACRIFICE P	
WITHIN NORMAL LIMITS PPPPPPPPPPPPPP	
1909 TERMINAL SACRIFICE P	
NASAL DISCHARGE - RED P	
WITHIN NORMAL LIMITS PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	
1910 TERMINAL SACRIFICE P	
WITHIN NORMAL LIMITS PPPPPPPPPPPPPPP	
1911 TERMINAL SACRIFICE P	
WITHIN NORMAL LIMITS PPPPPPPPPPPP	

CODE: 1-SLIGHT 2-MODERATE 3-MARKED P-PRESENT

APPENDIX D

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL CLINICAL OBSERVATIONS DURING GESTATION

|--|

FEMALE#	OBSERVATIONS	DAY OF 1 1 1 1 1 1 1 1 1 2 2 GESTATION 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
1912	TERMINAL SACRIFICE	P
	WITHIN NORMAL LIMITS	P P P P P P P P P P P P P P P P P P P
1913	TERMINAL SACRIFICE	P
	WITHIN NORMAL LIMITS	Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р
1914	TERMINAL SACRIFICE	P
	WITHIN NORMAL LIMITS	Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р
1915	TERMINAL SACRIFICE	P
	WITHIN NORMAL LIMITS	Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р
1916	TERMINAL SACRIFICE	Р
	WITHIN NORMAL LIMITS	Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р
1917	TERMINAL SACRIFICE	Р
	WITHIN NORMAL LIMITS	Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р
1918	TERMINAL SACRIFICE	P
	WITHIN NORMAL LIMITS	Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р
1919	TERMINAL SACRIFICE	Р
	WITHIN NORMAL LIMITS	Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р
1920	TERMINAL SACRIFICE	Р
	WITHIN NORMAL LIMITS	Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р
1921	TERMINAL SACRIFICE	P
	WITHIN NORMAL LIMITS	Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р
1922	TERMINAL SACRIFICE	P
	WITHIN NORMAL LIMITS	рррррррррррррррр

Huntingdon Life Sciences 05-4287 APPENDIX D GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE INDIVIDUAL CLINICAL OBSERVATIONS DURING GESTATION GROUP 1 0 MG/M3 _____ DAY OF 1 1 1 1 1 1 1 1 1 2 2 FEMALE# OBSERVATIONS GESTATION 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 _____ 1923 TERMINAL SACRIFICE Ρ WITHIN NORMAL LIMITS 1924 TERMINAL SACRIFICE Ρ WITHIN NORMAL LIMITS РРРРРРРРРРРРРРРР _____ CODE: 1-SLIGHT 2-MODERATE 3-MARKED P-PRESENT

APPENDIX D

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL CLINICAL OBSERVATIONS DURING GESTATION

GROUP 2 2000 MG/M3

MALE#	OBSERVATIONS	DAY OF GESTATION 0 1 2 3	1 1 1 1 1 1 1 1 1 2 2 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
2901	TERMINAL SACRIFICE		Р
2901	NASAL DISCHARGE - RED		P P
	WITHIN NORMAL LIMITS		PPPPPPPPPP PPPP
2902	TERMINAL SACRIFICE		P
	WITHIN NORMAL LIMITS		РРРРРРРРРРРРРР
2903	TERMINAL SACRIFICE		P
	WITHIN NORMAL LIMITS		РРРРРРРРРРРРРР
2904			D
2904	TERMINAL SACRIFICE WITHIN NORMAL LIMITS		Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р
	WITHIN NORMAL LIMITS		* * * * * * * * * * * * * * * * * * * *
2905	TERMINAL SACRIFICE		P
	WITHIN NORMAL LIMITS		_ ₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽
2906	TERMINAL SACRIFICE		P
	WITHIN NORMAL LIMITS		P P P P P P P P P P P P P P P P
2907	TERMINAL SACRIFICE		P
	WITHIN NORMAL LIMITS	P	РРРРРРРРРРРРРР
2908	TERMINAL SACRIFICE		р
2900	NASAL DISCHARGE - RED		ррр
	WITHIN NORMAL LIMITS	P	
		-	
2909	TERMINAL SACRIFICE		P
	WITHIN NORMAL LIMITS	P	РРРРРРРРРРРРРР
2910	TERMINAL SACRIFICE		P
	WITHIN NORMAL LIMITS	P	РРРРРРРРРРРРР

APPENDIX D

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL CLINICAL OBSERVATIONS DURING GESTATION

2000 MG/M3					
------------	--	--	--	--	--

		DAY OF 1 1 1 1 1 1 1 1 2 2
FEMALE#	OBSERVATIONS	GESTATION 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
2911	TERMINAL SACRIFICE	р
2711	WITHIN NORMAL LIMITS	₽₽₽₽₽₽₽₽₽₽₽₽₽₽ ₽
2912	TERMINAL SACRIFICE	P
	WITHIN NORMAL LIMITS	Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р
2913	TERMINAL SACRIFICE WITHIN NORMAL LIMITS	P P P P P P P P P P P P P P P P P P P
2914	TERMINAL SACRIFICE	Р
	WITHIN NORMAL LIMITS	Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р
2915	TERMINAL SACRIFICE WITHIN NORMAL LIMITS	ррррррррррррррррр Р
0016		р
2916	TERMINAL SACRIFICE WITHIN NORMAL LIMITS	₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽ ₽
2917	TERMINAL SACRIFICE	Р
	WITHIN NORMAL LIMITS	<u> </u>
2918	TERMINAL SACRIFICE NASAL DISCHARGE - RED	рррр рр р
	WITHIN NORMAL LIMITS	PPPP PPPPP PPPP
2919	TERMINAL SACRIFICE	P
	WITHIN NORMAL LIMITS	Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р
2920	TERMINAL SACRIFICE WITHIN NORMAL LIMITS	P P P P P P P P P P P P P P P P P P P P
2921	TERMINAL SACRIFICE	Р
	WITHIN NORMAL LIMITS	ррррррррррррррррр

Page 94

APPENDIX D

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL CLINICAL OBSERVATIONS DURING GESTATION

GROUP 2	2000 MG/M3		
FEMALE#	OBSERVATIONS	DAY OF 1 1 1 1 1 1 1 1 1 1 2 2 GESTATION 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1	
2922	TERMINAL SACRIFICE WITHIN NORMAL LIMITS	₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽ ₽	
2923	TERMINAL SACRIFICE WITHIN NORMAL LIMITS	ррррррррррррррррррр р	
2924	TERMINAL SACRIFICE WITHIN NORMAL LIMITS	р рррррррррррррррррррр	

APPENDIX D

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL CLINICAL OBSERVATIONS DURING GESTATION

GROUP 3	10000 MG/M3

FEMALE#	OBSERVATIONS	DAY OF GESTATION	1 1 1 1 1 1 1 1 1 2 2 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
3901	TERMINAL SACRIFICE WITHIN NORMAL LIMITS		рррррррррррррр Р
3902	TERMINAL SACRIFICE NASAL DISCHARGE - RED WITHIN NORMAL LIMITS		Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р
3903	TERMINAL SACRIFICE NASAL DISCHARGE - RED WITHIN NORMAL LIMITS		РРРРРРРРРРР РР РР
3904	TERMINAL SACRIFICE WITHIN NORMAL LIMITS		Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р
3905	TERMINAL SACRIFICE WITHIN NORMAL LIMITS		Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р
3906	TERMINAL SACRIFICE NASAL DISCHARGE - RED WITHIN NORMAL LIMITS		РРРРРРРР РРРРРР Р Р
3907	TERMINAL SACRIFICE NASAL DISCHARGE - RED WITHIN NORMAL LIMITS		ррррр рррррррр рр р
3908	TERMINAL SACRIFICE NASAL DISCHARGE - RED WITHIN NORMAL LIMITS		РРРРРРРРРРР Р РРРР Р
3909	TERMINAL SACRIFICE NASAL DISCHARGE - RED WITHIN NORMAL LIMITS		р р р р р р

APPENDIX D

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL CLINICAL OBSERVATIONS DURING GESTATION

GROUP 3 10000 MG/M3

FEMALE#	OBSERVATIONS	DAY OF 1 1 1 1 1 1 1 1 1 2 2 GESTATION 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
3910	TERMINAL SACRIFICE NASAL DISCHARGE - RED WITHIN NORMAL LIMITS	Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р
3911	TERMINAL SACRIFICE NASAL DISCHARGE - RED WITHIN NORMAL LIMITS	РР РР РРР Р Р РРРРРР Р Р
3912	TERMINAL SACRIFICE WITHIN NORMAL LIMITS	Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р
3913	TERMINAL SACRIFICE WITHIN NORMAL LIMITS	Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р
3914	TERMINAL SACRIFICE WITHIN NORMAL LIMITS	ррррррррррррррррр р
3915	TERMINAL SACRIFICE NASAL DISCHARGE - RED WITHIN NORMAL LIMITS	рррррр рррррр рррррр р
3916	TERMINAL SACRIFICE NASAL DISCHARGE - RED	р
3917	WITHIN NORMAL LIMITS TERMINAL SACRIFICE	ррррррррр ррррр
	NASAL DISCHARGE - RED WITHIN NORMAL LIMITS	РРРРРРРРРР РРРРР РР
3918	TERMINAL SACRIFICE WITHIN NORMAL LIMITS	р рррррррррррррррррр

GROUP 3 10000 MG/M3

Huntingdon Life Sciences 05-4287

Page 97

APPENDIX D

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL CLINICAL OBSERVATIONS DURING GESTATION

FEMALE#	OBSERVATIONS	DAY OF GESTATION	0 1	2	34	1 5	6	7	8			-	_	-				_	-	2 2) 1
3919	TERMINAL SACRIFICE WITHIN NORMAL LIMITS		P	PI	ΡĒ	₽ ₽	P	P	P	ΡI	? P	₽	P	P	P	P F	P	P		P P P
3920	TERMINAL SACRIFICE NASAL DISCHARGE - RED WITHIN NORMAL LIMITS		P	PI	ΡĒ	₽ ₽	P	P	P	ΡI	? F	P		P	P	5 5	P	P	P	5 P
3921	TERMINAL SACRIFICE NASAL DISCHARGE - RED WITHIN NORMAL LIMITS		P	PI	ΡĒ	₽ ₽	P			ΡI				P	Ρï	P F	₽ ₽	P	P	р р
3922	TERMINAL SACRIFICE NASAL DISCHARGE - RED WITHIN NORMAL LIMITS		P	PI	ΡĒ	₽ ₽	P	P	P	ΡI	₽ F	₽	P		P		P	P	P	р Р
3923	TERMINAL SACRIFICE WITHIN NORMAL LIMITS		P	PI	ΡĒ	₽ ₽	P	P	P	ΡI	? P	P	P	P	P	P F	P	P	P	P P P
3924	TERMINAL SACRIFICE NASAL DISCHARGE - RED WITHIN NORMAL LIMITS		P	P	P E	р р 			P									P	P	р ? р

APPENDIX D

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL CLINICAL OBSERVATIONS DURING GESTATION

EMALE#	OBSERVATIONS	DAY OF GESTATION	0 1 2	34	4 5	56	7			1 1 0 1										
4901	TERMINAL SACRIFICE																		P	
	WITHIN NORMAL LIMITS			I	ΡI	P	Ρ	Ρ	P	ΡP	P	Ρ	Ρ	Ρ	Ρ	ΡI	? P	Ρ	P	
4902	TERMINAL SACRIFICE																		P	
	ALOPECIA - GENERAL												2	2	2	2 2	2 2	2	2	
	CHROMODACRYORRHEA - UNILATERAL								Ρ											
	WITHIN NORMAL LIMITS			E	ΡI	P P	Ρ	Ρ	:	ΡP	P	Ρ								
4903	TERMINAL SACRIFICE																		P	
	NASAL DISCHARGE - RED								ΡÏ	ΡP	0						P			
	WITHIN NORMAL LIMITS			E	ΡI	P P	Ρ	Ρ			Ρ	Ρ	Ρ	Ρ	Ρ	ΡI	2	Ρ	P	
4904	TERMINAL SACRIFICE																		P	
	WITHIN NORMAL LIMITS			I	ΡI	P	Ρ	Ρ	P	ΡP	P	Ρ	Ρ	Ρ	Ρ	ΡI	P P	Ρ	P	
4905	TERMINAL SACRIFICE																		P	
	WITHIN NORMAL LIMITS			I	PI	P	Ρ	Ρ	P	ΡP	P	Ρ	Ρ	Ρ	Ρ	ΡI	? P	Ρ	P	
4906	TERMINAL SACRIFICE																		P	
	WITHIN NORMAL LIMITS			I	ΡI	P	Ρ	Ρ	P	ΡP	P	Ρ	Ρ	Ρ	Ρ	ΡI	? P	Ρ	P	
4907	TERMINAL SACRIFICE																		P	
	WITHIN NORMAL LIMITS			ΡI	ΡI	P	Ρ	Ρ	P	ΡP	P	Ρ	Ρ	Ρ	Ρ	ΡI	? P	Ρ	P	
4908	TERMINAL SACRIFICE																		P	
	INCISORS MALOCCLUDED			ΡĒ	PE	P P	Ρ	Ρ	P	ΡP	P	Ρ	Ρ	Ρ	Ρ	ΡI	P P	Ρ	P	
	MASS															2 2	2 2	2	2	
4909	TERMINAL SACRIFICE																		P	
	WITHIN NORMAL LIMITS			ΡI	ΡĒ	P P	Ρ	Ρ	P	ΡP	P	Ρ	Ρ	Ρ	Ρ	ΡI	? P	Ρ	P	
4910	TERMINAL SACRIFICE																		P	
	NASAL DISCHARGE - RED														Ρ	I	? P			
	WITHIN NORMAL LIMITS			ΡĒ	PE	P P	Ρ	Ρ	P	ΡP	р	Ρ	Ρ	Ρ		Р		Ρ	P	

APPENDIX D

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL CLINICAL OBSERVATIONS DURING GESTATION

ROUP 4	20000 MG/M3	
FEMALE#	OBSERVATIONS	DAY OF 1 1 1 1 1 1 1 1 1 2 2 GESTATION 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
4911	TERMINAL SACRIFICE	P
1711	WITHIN NORMAL LIMITS	₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽ ₽
4912	TERMINAL SACRIFICE	P
	WITHIN NORMAL LIMITS	Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р
4913	TERMINAL SACRIFICE	P
	WITHIN NORMAL LIMITS	Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р
4914	TERMINAL SACRIFICE	P
	NASAL DISCHARGE - RED WITHIN NORMAL LIMITS	РРРР Р РРРРРРРР РРРР Р
4915	TERMINAL SACRIFICE	P
1915	WITHIN NORMAL LIMITS	Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р Р
4916	TERMINAL SACRIFICE	P
	NASAL DISCHARGE - RED	
	WITHIN NORMAL LIMITS	₽₽₽₽₽₽₽₽₽ ₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽
4917	TERMINAL SACRIFICE	P
	NASAL DISCHARGE - RED WITHIN NORMAL LIMITS	PP P PPP P PPPPP P PP PPP
4918	TERMINAL SACRIFICE	P
	CHROMODACRYORRHEA - UNILATERAL	Р
	WITHIN NORMAL LIMITS	<u> </u>
4919	TERMINAL SACRIFICE	P
	WITHIN NORMAL LIMITS	<u> </u>
4920	TERMINAL SACRIFICE	P
	NASAL DISCHARGE – RED WITHIN NORMAL LIMITS	ррррр р ррррррррр РР РР

Page 100

APPENDIX D

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL CLINICAL OBSERVATIONS DURING GESTATION

		DAY OF	1 1 1 1 1 1 1 1 1 2 2
MALE# 	OBSERVATIONS	GESTATION	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
4921	TERMINAL SACRIFICE		P
	NASAL DISCHARGE - RED		Р
	WITHIN NORMAL LIMITS		РРРРРРРРР РРРРРРР
4922	TERMINAL SACRIFICE		P
	NASAL DISCHARGE - RED		Р РРР
	WITHIN NORMAL LIMITS		PPPPPP PPP PPPPP
4923	TERMINAL SACRIFICE		P
	NASAL DISCHARGE - RED		РР РРРРРР Р
	WITHIN NORMAL LIMITS		P P P P P P P P P P
4924	TERMINAL SACRIFICE		P
	CHROMODACRYORRHEA - BILATERAL		P

Р РРРР WITHIN NORMAL LIMITS _____

CODE: 1-SLIGHT 2-MODERATE 3-MARKED P-PRESENT

CHROMODACRYORRHEA - UNILATERAL

Page 101

APPENDIX E

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL GESTATION BODY WEIGHTS (GRAMS)

				DAY OF (GESTATION				
ANIMAL#	4	5	8	11	14	17	20	21	
1901	212	230	259	275	303	332	380	389	
1902	213	228	241	261	280	308	354	360	
1903	229	223	245	264	286	322	368	384	
1904	230	248	260	275	299	328	387	397	
1905	233	254	271	295	316	343	387	393	
1906	249	264	278	296	318	342	393	406	
1907	209	218	235	256	266	291	328	334	
1908	220	239	256	288	311	342	388	400	
1909	232	239	255	278	299	335	392	400	
1910	233	240	255	269	284	312	361	372	
1911	247	258	272	294	314	351	398	411	
1912	253	264	274	295	313	345	396	397	
1913	232	239	250	270	286	314	351	353	
1914	241	245	253	278	296	324	374	384	
1915x NP	245	243	257	258	253	263	263	264	
1916	246	261	270	298	318	357	410	414	
1917	249	254	269	297	316	357	405	415	
1918	259	269	283	310	338	378	420	434	
1919	214	223	245	268	288	306	351	368	
1920	222	232	246	261	280	292	313	313	
1921	231	236	253	275	295	324	373	382	
1922	235	242	257	282	295	324	368	382	
1923	243	247	264	292	317	359	405	426	
1924	245	259	274	297	316	353	395	405	
EAN	234	244	259	281	301	332	378	388	
.D.	14.0	14.6	12.8	14.9	17.0	22.2	26.3	28.6	
N	23	23	23	23	23	23	23	23	

NP=NOT PREGNANT x=EXC

Page 102

APPENDIX E

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL GESTATION BODY WEIGHTS (GRAMS)

GROUP 2 20	00 MG/M3								
				DAY OF (GESTATION				
ANIMAL#	4	5	8	11	14	17	20	21	
2901	209	221	233	245	263	286	323	327	
2902	216	230	234	245	262	287	330	333	
2903	224	236	246	267	280	302	350	354	
2904	232	244	271	288	313	342	385	397	
2905	235	252	268	285	306	339	393	404	
2906	241	257	275	290	313	337	381	385	
2907	202	221	233	255	273	307	353	365	
2908	214	224	240	256	274	299	342	355	
2909	228	235	252	270	286	312	353	364	
2910	234	248	263	279	302	342	389	395	
2911	246	258	274	297	310	342	393	401	
2912	270	280	294	318	335	376	435	454	
2913	229	234	251	273	291	322	369	372	
2914	239	244	255	279	281	302	327	328	
2915	244	257	271	290	307	343	389	399	
2916	248	257	276	293	312	357	405	418	
2917	254	261	280	295	306	334	366	381	
2918	266	277	290	315	326	355	398	405	
2919x NP	211	218	217	228	235	237	232	240	
2920	222	229	237	254	270	298	335	347	
2921	228	239	256	278	295	326	366	370	
2922	233	229	250	269	278	318	339	350	
2923	242	257	274	292	312	353	408	426	
2924	243	253	267	285	301	335	387	396	
MEAN	235	245	260	279	296	327	370	379	
S.D.	16.6	16.5	18.0	19.6	20.3	24.3	29.9	32.7	
N	23	23	23	23	23	23	23	23	

NP=NOT PREGNANT x=EXCLUI

Page 103

APPENDIX E

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL GESTATION BODY WEIGHTS (GRAMS)

GROUP 3 10	0000 MG/M3			110	LVIDOILL G				.,
				DAY OF (JESTATION				
ANIMAL#	4	5	8	11	14	17	20	21	
3901	210	230	232	245	262	284	320	326	
3902	219	242	253	273	295	313	356	363	
3903	219	231	249	267	291	310	362	375	
3904	233	245	263	285	299	327	379	379	
3905	237	248	256	268	286	322	379	388	
3906	246	245	267	279	295	338	386	392	
3907	206	218	229	245	267	302	337	344	
3908	212	226	236	255	273	294	333	338	
3909	231	245	255	278	296	325	370	370	
3910	241	246	257	274	287	318	367	377	
3911	243	254	263	285	302	336	393	401	
3912	264	275	280	299	315	345	390	399	
3913	232	235	260	276	293	328	354	370	
3914	241	250	267	290	305	333	375	390	
3915	246	258	268	283	292	309	324	324	
3916	248	257	270	292	309	348	399	408	
3917	252	256	275	297	319	357	401	408	
3918	258	263	280	294	304	337	377	394	
3919	216	227	237	254	273	309	354	368	
3920	218	227	242	262	281	313	365	374	
3921	223	230	243	255	272	295	329	334	
3922	233	239	253	271	294	338	393	408	
3923	241	249	263	275	293	323	373	389	
3924	245	258	260	283	305	344	388	398	
MEAN	234	244	256	274	292	323	367	376	
S.D.	15.7	13.9	14.4	15.6	14.8	18.7	24.2	25.9	
N	24	24	24	24	24	24	24	24	

Page 104

APPENDIX E

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL GESTATION BODY WEIGHTS (GRAMS)

					DAY OF (GESTATION				
ANIMAL#		4	5	8	11	14	17	20	21	
4901		209	220	226	243	260	281	330	328	
4902		213	225	239	255	274	297	342	352	
4903		228	244	248	267	278	306	369	376	
4904		231	236	249	270	285	319	370	380	
4905		237	252	260	275	293	327	379	383	
4906		239	250	262	279	302	329	378	389	
4907		211	216	229	248	267	291	335	340	
4908x	NP	214	218	222	230	221	228	237	233	
4909		222	231	233	243	255	279	313	324	
4910		235	242	264	286	301	328	373	386	
4911		241	254	264	282	294	326	378	387	
4912		247	257	271	291	306	332	379	386	
4913		235	246	257	272	289	322	365	372	
4914		244	254	262	285	297	327	368	380	
4915		245	253	261	279	291	317	357	371	
4916		246	254	261	278	295	326	374	389	
4917		258	269	282	303	318	362	408	417	
4918		259	265	275	300	308	350	381	394	
4919x	NP	212	217	215	217	225	223	221	218	
4920		220	224	237	258	275	306	338	348	
4921		229	234	247	268	279	315	348	358	
4922		233	246	261	276	294	327	373	366	
4923		236	247	250	275	280	308	345	351	
4924		261	271	286	325	343	389	439	442	
MEAN		235	245	256	275	290	321	365	374	
S.D.		14.6	15.2	16.3	19.5	19.5	24.9	27.1	27.4	
N		22	22	22	22	22	22	22	22	

NP=NOT PREGNANT x=EXCLU

Page 105

APPENDIX F

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL GESTATION BODY WEIGHT GAIN (GRAMS)

	DAY	Y OF GESTAT	ION								
ANIMAL#	4 - 5	5 5 - 8	8 - 11						14 - 21		
	18		16				9	73		159	
1902	15	14	19	20	28	47	5	53	80	132	
1903	-6	22	19	22	35	46	17	63	98	161	
1904	19	12	15	24	29	59	10	51	98	149	
1905	21	17	24	22	27	44	6	63	77	139	
1906	14	15	18	22	24	51	14	55	88	143	
1907	8	18	21	10	25	37	6	49	68	116	
1908	19	17	32	23	31	46	12	72	89	161	
1909	8	16	22	21	36	57	8	60	101	161	
1910	7	15	15	14	28	50	11	44	88	132	
1911	12	14	22	20	37	47	13	56	97	153	
1912	11	10	21	17	33	51	1	49	85	133	
1913	8	11	20	16	29	37	2	46	68	114	
1914	4	9	25	18	28	50	10	51	88	139	
1915x NP	-2	14	1	-6	11	-1	1	10	11	21	
1916	15	9	28	20	39	53	4	57	96	153	
1917	5	15	29	19	41	48	10	62	99	161	
1918	10	15	27	27	40	43	14	69	96	165	
1919	9	21	24	20	18	45	17	65	80	145	
1920	9	14	16	19	12	21	0	48	33	81	
1921	6	17	22	20	29	49	9	59	87	146	
1922	7	15	25	14	28	45	14	54	87	141	
1923	5	17	28	25	42	46	21	69	109	179	
1924	14	14	23	19	37	43	10	56	89	146	
EAN	10	15	22	20	31	46	10	57	86	144	
.D.	6.1	4.5	4.7	4.2	7.3	7.6	5.2	8.4	15.5	20.6	
N	23	23	23	23	23	23	23	23	23	23	

NP=NOT PREGNANT

Page 106

APPENDIX F

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL GESTATION BODY WEIGHT GAIN (GRAMS)

]	O YAC	F GESTATI	ION								
ANIMAL#								20 - 21		14 - 21		
2901				13	17			4	41		105	
2902		14	3	11	17	25	43	3	32	70	102	
2903	:	12	10	22	13	22	48	5	44	74	119	
2904	:	12	27	17	26	28	43	12	70	84	153	
2905	:	17	16	17	22	33	54	11	55	98	153	
2906	:	16	18	15	24	24	44	4	57	72	128	
2907	:	19	13	21	18	34	46	13	52	93	145	
2908		11	16	16	18	25	43	13	50	81	130	
2909		7	17	18	17	26	41	11	51	78	129	
2910		13	16	16	23	41	46	7	54	94	148	
2911		12	16	23	14	32	51	8	53	90	143	
2912		10	14	24	17	41	59	19	55	119	175	
2913		5	17	22	19	31	46	3	57	81	138	
2914		5	11	24	3	21	25	0	37	47	84	
2915		12	14	18	18	36	46	10	50	92	143	
2916		9	19	17	20	45	48	13	55	105	161	
2917		8	19	15	11	28	32	15	45	76	120	
2918		11	13	25	11	29	42	8	49	79	128	
2919x NE	2	6	-1	11	7	2	-5	9	17	6	23	
2920		8	8	17	16	27	38	12	41	77	118	
2921		11	17	22	17	31	40	4	56	75	132	
2922		-4	21	18	9	40	21	11	48	73	121	
2923		15	16	19	20	41	55	18	55	114	168	
2924	:	10	14	18	16	34	52	9	48	95	143	
EAN	:	11	15	19	17	31	44	9	50	84	134	
.D.	4	.7	4.7	3.6	5.0	6.9	8.9	5.0	7.8	16.3	21.5	
N	:	23	23	23	23	23	23	23	23	23	23	

NP=NOT PREGNANT

Page 107

APPENDIX F

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL GESTATION BODY WEIGHT GAIN (GRAMS)

	DAY	OF GESTAT	LON								
ANIMAL#							20 - 21		14 - 21		
	19						6			96	
3902	24	11	20	21	19	43	7	52	69	121	
3903	12	17	18	24	20	52	13	59	84	144	
3904	13	17	22	14	28	52	-1	53	80	133	
3905	11	8	12	18	37	57	8	38	102	140	
3906	-1	21	13	16	43	48	6	49	97	146	
3907	13	10	16	22	34	35	8	49	77	126	
3908	14	10	19	18	21	39	6	47	66	113	
3909	14	10	23	18	30	45	0	51	75	126	
3910	5	11	17	13	31	49	10	41	90	131	
3911	12	9	22	17	33	57	8	48	98	146	
3912	10	6	18	16	30	45	8	40	84	124	
3913	3	25	15	17	36	26	16	57	77	135	
3914	10	16	24	14	28	42	15	54	85	139	
3915	12	10	15	9	17	15	1	34	32	67	
3916	10	13	22	17	39	51	10	51	100	151	
3917	4	18	22	22	39	44	6	62	89	151	
3918	5	18	14	10	32	41	16	42	89	131	
3919	12	10	17	19	36	45	14	46	95	141	
3920	9	15	21	18	32	52	9	54	93	147	
3921	6	13	12	17	24	34	5	42	63	105	
3922	6	14	19	22	44	55	15	54	114	169	
3923	8	14	12	18	31	50	16	44	96	140	
3924	14	2	23	23	38	45	10	47	93	140	
EAN	10	13	18	17	31	44	9	48	84	132	
.D.	5.2	5.5	3.9	3.7	7.6	9.9	4.9	7.7	17.0	21.0	
N	24	24	24	24	24	24	24	24	24	24	

Page 108

APPENDIX F

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL GESTATION BODY WEIGHT GAIN (GRAMS)

		DAY	OF GESTAT	ION								
ANIMAL#		4 - 5	5 - 8	8 - 11								
4901			5					-2			108	
4902		12	14	16	20	23	45	11	50	78	127	
4903		16	4	20	11	28	63	7	35	98	132	
4904		5	13	21	15	34	52	10	49	95	144	
4905		15	8	15	18	34	51	4	42	90	131	
4906		11	12	16	23	27	49	12	52	87	139	
4907		5	12	19	19	25	44	4	50	73	123	
4908x	NP	5	4	8	-9	6	10	-5	3	11	14	
4909		9	2	9	13	24	33	11	24	69	93	
4910		7	22	22	15	27	45	13	59	85	144	
4911		13	10	18	13	32	52	9	40	93	133	
4912		10	14	20	15	26	47	7	49	80	129	
4913		10	11	15	17	32	44	7	44	83	127	
4914		10	8	23	13	30	42	12	43	83	126	
4915		8	8	18	12	26	40	14	38	80	118	
4916		8	7	18	17	31	48	16	41	94	135	
4917		11	14	20	15	44	46	8	49	99	148	
4918		6	11	24	8	42	32	13	43	86	129	
4919x	NP	6	-3	2	8	-2	-2	-3	7	-7	1	
4920		5	13	21	16	31	32	10	50	73	124	
4921		5	13	21	12	36	33	10	45	79	124	
4922		12	15	15	18	34	46	-6	48	73	120	
4923		11	3	25	5	28	37	6	33	71	104	
4924		11	15	39	18	47	49	4	71	100	171	
EAN		10	11	20	15	31	44	8	45	83	129	
D.		3.2	4.7	5.5	4.0	6.8	7.7	5.1	9.5	10.0	16.0	
N		22	22	22	22	22	22	22	22	22	22	

NP=NOT PREGNANT

Page 109

APPENDIX G

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL GESTATION FEED CONSUMPTION -- (GRAMS/KG/DAY)

		DAY OF	GESTATION							
ANIMAL#		4 - 5	5 - 8					20 - 21		
1901		 66		 79	91	79	75	48	77	
1902		83	82	83	88	81	77	44	76	
1903		43	66	93	90	84	72	58	77	
1904		76	82	79	83	78	71	46	73	
1905		72	79	87	84	81	72	43	74	
1906		63	71	72	78	77	76	58	72	
1907		63	80	82	77	82	73	44	73	
1908		95	89	96	94	90	79	58	84	
1909		77	86	85	87	79	72	58	78	
1910		75	79	76	82	82	72	55	74	
1911		76	79	81	79	78	73	43	72	
1912		70	78	76	72	72	72	36	67	
1913		81	80	81	75	81	72	51	73	
1914		66	77	80	82	82	78	58	76	
1915x	NP	56	75	67	67	69	63	72	69	
1916		76	78	84	84	83	74	46	75	
1917		73	86	91	89	83	75	54	80	
1918		73	74	86	84	83	73	66	78	
1919		54	85	92	92	75	69	58	78	
1920		78	92	100	104	93	91	65	91	
1921		70	83	92	89	81	74	54	79	
1922		71	81	91	82	77	73	63	78	
1923		CF	CF	CF	CF	CF	79	62	71	
1924		65	81	87	83	78	71	57	76	
MEAN		71	81	85	85	81	74	53	76	
S.D.		10.5	6.0	7.1	7.1	4.5	4.5	8.1	4.7	
N		22	22	22	22	22	23	23	23	

NP=NOT PREGNANT x=EXCLUDED FROM MEAN

CF=Contaminated Feeder

Page 110

APPENDIX G

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL GESTATION FEED CONSUMPTION -- (GRAMS/KG/DAY)

			GESTATION							
ANIMAL#			5 - 8					20 - 21		
2901		84	89	83	82	79	76	39	75	
2902		83	81	79	76	79	79	52	74	
2903		70	73	79	76	74	72	50	71	
2904		44	80	78	87	78	75	52	75	
2905		73	82	78	82	82	75	35	72	
2906		79	80	75	80	73	65	41	69	
2907		78	89	90	81	83	72	43	76	
2908		86	145	86	91	87	76	47	89	
2909		94	80	90	86	83	77	55	79	
2910		85	88	82	84	87	76	35	76	
2911		74	80	83	76	75	71	38	71	
2912		76	84	84	82	82	75	44	75	
2913		76	86	88	83	82	75	48	77	
2914		72	74	82	72	78	73	45	71	
2915		73	75	76	79	89	72	52	74	
2916		72	83	82	82	86	72	47	75	
2917		75	90	83	82	78	71	50	76	
2918		77	80	81	83	76	70	40	72	
2919x	NP	76	78	81	79	72	74	65	75	
2920		59	79	74	78	79	76	68	76	
2921		76	87	84	84	82	73	53	77	
2922		45	78	76	76	86	67	47	71	
2923		78	87	80	86	76	74	54	76	
2924		77	94	88	89	84	77	41	79	
MEAN		74	85	82	82	81	73	47	75	
S.D.		11.5	14.1	4.6	4.7	4.5	3.3	7.5	4.0	
N		23	23	23	23	23	23	23	23	

NP=NOT PREGNANT x=EXCLU

x=EXCLUDED FROM MEAN

Page 111

APPENDIX G

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL GESTATION FEED CONSUMPTION -- (GRAMS/KG/DAY)

GROUP 3	10000 MG/M3		11101	120112 02	5111120111	222 00100		(0101110) 100	,
	DAY OF	GESTATION							
ANIMAL#	4 - 5	5 - 8					20 - 21		
3901	76		 67	 75	73	70	52	68	
3902	74	72	74	83	75	70	40	69	
3903	72	84	85	86	74	72	58	77	
3904	81	88	89	88	82	74	42	77	
3905	71	77	77	81	80	74	47	73	
3906	47	71	79	80	86	75	39	72	
3907	92	87	85	90	94	78	47	80	
3908	88	88	90	86	85	78	50	79	
3909	69	75	77	80	76	69	39	69	
3910	74	77	80	78	73	65	43	69	
3911	84	90	85	78	80	74	48	76	
3912	73	75	76	82	84	74	54	74	
3913	55	85	79	87	86	77	50	77	
3914	66	78	81	79	73	67	49	71	
3915	84	81	84	84	86	76	42	75	
3916	87	78	75	CF	88	CF	38	70	
3917	66	78	83	86	87	72	47	75	
3918	81	82	79	85	80	76	56	76	
3919	83	82	83	84	84	79	55	78	
3920	69	80	83	80	78	75	42	73	
3921	97	78	71	77	73	72	42	69	
3922	64	85	87	CF	CF	CF	51	74	
3923	71	83	79	82	77	73	48	74	
3924	75	69	78	82	CF	79	50	72	
MEAN	75	80	80	82	81	74	47	74	
S.D.	11.4	6.0	5.5	3.9	6.0	3.7	5.8	3.6	
N	24	24	24	22	22	22	24	24	

CF=Contaminated Feeder

Page 112

APPENDIX G

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL GESTATION FEED CONSUMPTION -- (GRAMS/KG/DAY)

	GROUP 4	2000	0 MG/M3		11101			LLD CONDC		(0101110) 100)	
4901 71 CF CF CF 77 47 62 4902 60 70 73 77 73 76 52 70 4903 83 78 75 72 71 71 43 68 4904 58 71 76 76 67 42 68 4905 83 80 82 81 79 72 39 72 4906 81 76 77 81 75 65 42 69 4907 84 81 84 83 79 50 77 4908x NP 63 67 66 60 66 69 46 62 4909 73 67 67 75 77 74 0 67 4910 69 92 82 79 78 73 49 73 4911 68 74 75 75 80 72 47 70 4913 85			DAY OF	GESTATION							
4901 71 CF CF CF 77 47 62 4902 60 70 73 77 73 76 52 70 4903 83 78 75 72 71 71 43 68 4904 58 71 76 76 76 67 42 68 4905 83 80 82 81 79 72 39 72 4906 81 76 77 75 77 77 40 67 4907 84 81 84 83 79 50 77 4908x NP 63 67 67 75 77 70 67 4910 69 92 82 79 78 73 77 40 67 4911 69 92 82 79 78 72 45 71 4912 71 81 77 75 80 72 45 73 4913 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>											
4903 83 78 75 72 71 71 43 68 4904 58 71 76 76 67 67 42 68 4906 81 76 77 81 75 65 42 69 4906 81 76 77 81 75 65 42 69 4907 84 81 84 83 79 50 77 4908x NP 63 67 66 66 69 46 62 4909 73 67 67 75 77 77 40 67 4910 69 92 82 79 78 73 77 70 4913 85 83 78 77 73 49 73 4913 85 83 78 77 74 71 4913 68 76 75 79 84 72 72 4916 74 83 81 80 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
4904 58 71 76 76 76 67 42 68 4905 83 80 82 81 79 72 39 72 4906 81 76 77 81 75 65 42 69 4907 84 81 84 83 79 50 77 4908x NP 63 67 66 60 66 69 62 4900 69 92 82 79 78 73 57 77 4910 69 92 82 79 78 73 57 71 4911 68 74 75 77 73 49 73 4913 85 83 78 78 77 73 49 73 4914 68 75 72 76 74 72 45 71 4914 68 75 72 71 83 66 59 71 4916 74 <td< td=""><td>4902</td><td></td><td>60</td><td>70</td><td>73</td><td>77</td><td>73</td><td>76</td><td>52</td><td>70</td><td></td></td<>	4902		60	70	73	77	73	76	52	70	
4905 83 80 82 81 79 72 39 72 4906 81 76 77 81 75 65 42 69 4907 84 81 84 83 79 50 77 4908x NP 63 67 66 60 66 69 46 62 4909 73 67 67 75 77 74 67 67 4910 69 92 82 79 78 73 57 77 4912 71 81 77 76 74 72 45 71 4913 85 83 78 78 77 45 73 4915 88 90 80 77 75 69 42 72 4915 76 79 74 76 74 74 71 4915 88 90 80 77 75 69 72 72 4915 88 <td< td=""><td>4903</td><td></td><td>83</td><td>78</td><td>75</td><td>72</td><td>71</td><td>71</td><td>43</td><td>68</td><td></td></td<>	4903		83	78	75	72	71	71	43	68	
4906 81 76 77 81 75 65 42 69 4907 84 81 84 84 83 79 50 77 4908x NP 63 67 66 66 69 46 62 4900 73 67 67 75 77 74 0 67 4910 69 92 82 79 78 73 57 77 4911 68 74 75 75 80 72 47 70 4913 85 83 78 77 73 49 73 4914 68 76 75 79 84 77 45 73 4915 88 90 80 77 75 69 42 72 4916 74 83 81 80 83 80 46 76 4917 76 79 74 76 81 72 47 71 4918	4904		58	71	76	76	76	67	42	68	
4907 84 81 84 84 83 79 50 77 4908x NP 63 67 66 60 66 69 46 62 4909 73 67 67 75 77 77 40 67 4910 69 92 82 79 78 73 57 77 4911 68 74 75 75 80 72 47 70 4912 71 81 77 76 77 73 49 73 4914 68 76 75 79 84 77 45 73 4915 88 90 80 77 75 69 42 72 4916 74 83 81 80 83 80 86 59 71 4918 68 75 72 71 83 66 59 78 4919x NP 74 68 70 72 86 73 7	4905		83	80	82	81	79	72	39	72	
4908x NP 63 67 66 60 66 69 46 62 4909 73 67 67 75 77 77 40 67 4910 69 92 82 79 78 73 57 77 4911 68 74 75 76 74 72 45 71 4912 71 81 77 76 74 72 45 71 4913 85 83 78 78 77 73 49 73 4914 68 70 80 77 75 69 42 72 4916 74 83 81 80 83 80 46 76 4917 76 79 74 76 81 72 47 71 4918 68 75 72 71 83 66 59 71 4919x NP 74 68 70 72 86 66 54 6	4906		81	76	77	81	75	65	42	69	
4909 73 67 67 75 77 77 40 67 4910 69 92 82 79 78 73 57 77 4911 68 74 75 75 80 72 47 70 4912 71 81 77 76 74 72 45 71 4913 85 83 78 77 73 49 73 4914 68 76 75 79 84 77 45 73 4915 88 90 80 77 75 69 42 72 4916 74 83 81 80 83 80 46 76 4917 76 79 74 76 81 72 47 71 4918 68 75 72 71 83 66 59 71 4919x NP 74 68 70 72 86 55 78 4920 <td< td=""><td>4907</td><td></td><td>84</td><td>81</td><td>84</td><td>84</td><td>83</td><td>79</td><td>50</td><td>77</td><td></td></td<>	4907		84	81	84	84	83	79	50	77	
4910 69 92 82 79 78 73 57 77 4911 68 74 75 75 80 72 47 70 4912 71 81 77 76 74 72 45 71 4913 85 83 78 77 73 49 73 4914 68 76 75 79 84 77 45 73 4915 88 90 80 77 75 69 42 72 4916 74 83 81 80 83 80 46 76 4918 68 75 72 71 83 66 59 71 4919x NP 74 68 70 72 66 66 54 66 4920 73 82 84 82 88 78 57 72 4921 72 82 77 78 79 21 67 4922 <td< td=""><td>4908x</td><td>NP</td><td>63</td><td>67</td><td>66</td><td>60</td><td>66</td><td>69</td><td>46</td><td>62</td><td></td></td<>	4908x	NP	63	67	66	60	66	69	46	62	
4911 68 74 75 75 80 72 47 70 4912 71 81 77 76 74 72 45 71 4913 85 83 78 78 77 73 49 73 4914 68 76 75 79 84 77 45 73 4915 88 90 80 77 75 69 42 72 4916 74 83 81 80 83 80 46 76 4917 76 79 74 76 81 72 47 71 4918 68 75 72 71 83 66 59 71 4919 NP 74 68 70 72 66 66 54 66 4920 73 82 84 82 88 78 57 72 4921 72 82 77 78 79 21 67 49	4909		73	67	67	75	77	77	40	67	
4912 71 81 77 76 74 72 45 71 4913 85 83 78 78 77 73 49 73 4914 68 76 75 79 84 77 45 73 4915 88 90 80 77 75 69 42 72 4916 74 83 81 80 83 80 46 76 4918 68 75 72 71 83 66 59 71 4918x 68 70 72 66 66 54 66 4920 73 82 84 82 88 78 55 78 4921 72 82 72 72 81 70 54 72 4923 92 77 80 77 81 71 45 72 4924 53 80 77 81 71 45 72 4924 53 <td< td=""><td>4910</td><td></td><td>69</td><td>92</td><td>82</td><td>79</td><td>78</td><td>73</td><td>57</td><td>77</td><td></td></td<>	4910		69	92	82	79	78	73	57	77	
4913 85 83 78 78 77 73 49 73 4914 68 76 75 79 84 77 45 73 4915 88 90 80 77 75 69 42 72 4916 74 83 81 80 83 80 46 76 4918 68 75 72 71 83 66 59 71 4919x NP 74 68 70 72 66 66 54 66 4920 73 82 84 82 88 78 55 78 4921 72 82 72 72 81 70 54 72 4923 92 77 70 79 78 79 21 67 4924 5 80 77 81 71 45 72 4923 92 77 80 77 81 71 45 72 49	4911		68	74	75	75	80	72	47	70	
4914 68 76 75 79 84 77 45 73 4915 88 90 80 77 75 69 42 72 4916 74 83 81 80 83 80 46 76 4917 76 79 74 76 81 72 47 71 4918 68 75 72 71 83 66 59 71 4918 68 75 72 71 83 66 59 71 4919 NP 74 68 70 72 66 66 54 66 4920 73 82 84 82 88 78 55 78 4921 72 82 72 72 81 71 45 72 4923 92 77 70 79 78 73 42 77 4924 53 80 92 87 86 73 42 77	4912		71	81	77	76	74	72	45	71	
4915 88 90 80 77 75 69 42 72 4916 74 83 81 80 83 80 46 76 4917 76 79 74 76 81 72 47 71 4918 68 75 72 71 83 66 59 71 4919x NP 74 68 70 72 66 66 54 66 4920 73 82 84 82 88 78 55 78 4921 72 82 72 72 81 70 54 72 4922 59 77 70 79 78 79 21 67 4923 92 77 80 77 81 71 45 72 4924 53 80 92 87 86 73 42 77 MEAN 73 79 78 79 73 46 72 S	4913		85	83	78	78	77	73	49	73	
4916 74 83 81 80 83 80 46 76 4917 76 79 74 76 81 72 47 71 4918 68 75 72 71 83 66 59 71 4919x NP 74 68 70 72 66 66 54 66 4920 73 82 84 82 88 78 55 78 4921 72 82 72 72 81 70 54 72 4922 59 77 70 79 78 79 21 67 4924 53 80 92 87 86 73 42 77 4924 53 80 92 87 86 73 42 77 4924 53 80 92 87 86 73 42 77 MEAN 73 79 78 79 73 46 72 78	4914		68	76	75	79	84	77	45	73	
4917 76 79 74 76 81 72 47 71 4918 68 75 72 71 83 66 59 71 4919x NP 74 68 70 72 66 66 54 66 4920 73 82 84 82 88 78 55 78 4921 72 82 72 72 81 70 54 72 4922 59 77 70 79 78 79 21 67 4924 53 80 92 87 86 73 42 77 4924 53 80 92 87 86 73 42 77 MEAN 73 79 78 79 73 46 72 S.D. 10.2 6.0 5.7 4.0 4.4 4.3 7.8 3.8	4915		88	90	80	77	75	69	42	72	
4918 68 75 72 71 83 66 59 71 4919x NP 74 68 70 72 66 66 54 66 4920 73 82 84 82 88 78 55 78 4921 72 82 72 72 81 70 54 72 4922 59 77 70 79 78 79 21 67 4923 92 77 80 77 81 71 45 72 4924 53 80 92 87 86 73 42 77 MEAN 73 79 78 79 73 46 72 S.D. 10.2 6.0 5.7 4.0 4.4 4.3 7.8 3.8	4916		74	83	81	80	83	80	46	76	
4919x NP 74 68 70 72 66 66 54 66 4920 73 82 84 82 88 78 55 78 4921 72 82 72 72 81 70 54 72 4922 59 77 70 79 78 79 21 67 4923 92 77 80 77 81 71 45 72 4924 53 80 92 87 86 73 42 77 MEAN 73 79 78 79 73 46 72 S.D. 10.2 6.0 5.7 4.0 4.4 4.3 7.8 3.8	4917		76	79	74	76	81	72	47	71	
4920 73 82 84 82 88 78 55 78 4921 72 82 72 72 81 70 54 72 4922 59 77 70 79 78 79 21 67 4923 92 77 80 77 81 71 45 72 4924 53 80 92 87 86 73 42 77 MEAN 73 79 78 79 73 46 72 S.D. 10.2 6.0 5.7 4.0 4.4 4.3 7.8 3.8	4918		68	75	72	71	83	66	59	71	
4921 72 82 72 72 81 70 54 72 4922 59 77 70 79 78 79 21 67 4923 92 77 80 77 81 71 45 72 4924 53 80 92 87 86 73 42 77 MEAN 73 79 78 79 73 46 72 S.D. 10.2 6.0 5.7 4.0 4.4 4.3 7.8 3.8	4919x	NP	74	68	70	72	66	66	54	66	
4922 59 77 70 79 78 79 21 67 4923 92 77 80 77 81 71 45 72 4924 53 80 92 87 86 73 42 77 MEAN 73 79 78 78 79 73 46 72 S.D. 10.2 6.0 5.7 4.0 4.4 4.3 7.8 3.8	4920		73	82	84	82	88	78	55	78	
4923 4924 92 53 77 80 80 92 77 87 81 86 71 73 45 42 72 77 MEAN 73 79 78 78 79 73 46 72 S.D. 10.2 6.0 5.7 4.0 4.4 4.3 7.8 3.8	4921		72	82	72	72	81	70	54	72	
4924 53 80 92 87 86 73 42 77 MEAN 73 79 78 78 79 73 46 72 S.D. 10.2 6.0 5.7 4.0 4.4 4.3 7.8 3.8	4922		59	77	70	79	78	79	21	67	
MEAN 73 79 78 78 79 73 46 72 S.D. 10.2 6.0 5.7 4.0 4.4 4.3 7.8 3.8	4923		92	77	80	77	81	71	45	72	
S.D. 10.2 6.0 5.7 4.0 4.4 4.3 7.8 3.8	4924		53	80	92	87	86	73	42	77	
	MEAN		73	79	78	78	79	73	46	72	
	S.D.		10.2	6.0	5.7	4.0	4.4	4.3	7.8	3.8	
	N			21	21	21	21	22	22		

NP=NOT PREGNANT x=EXCLUDED FROM MEAN

CF=Contaminated Feeder

Page 113

APPENDIX H

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL MATERNAL NECROPSY OBSERVATIONS

GROUP 1		INDIVIDUAL MAIERNAL NECROPSI OBSERVATIONS
ANIMAL#	ORGAN	OBSERVATION
1901		NO REMARKABLE OBSERVATIONS
1902		NO REMARKABLE OBSERVATIONS
1903		NO REMARKABLE OBSERVATIONS
1904		NO REMARKABLE OBSERVATIONS
1905		NO REMARKABLE OBSERVATIONS
1906		NO REMARKABLE OBSERVATIONS
1907		NO REMARKABLE OBSERVATIONS
1908		NO REMARKABLE OBSERVATIONS
1909		NO REMARKABLE OBSERVATIONS
1910		NO REMARKABLE OBSERVATIONS
1911		NO REMARKABLE OBSERVATIONS
1912		NO REMARKABLE OBSERVATIONS
1913		NO REMARKABLE OBSERVATIONS
1914		NO REMARKABLE OBSERVATIONS
1915	NP SALEWSKI'S TEST	NO FOCI PRESENT
1916		NO REMARKABLE OBSERVATIONS

Page 114

APPENDIX H

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL MATERNAL NECROPSY OBSERVATIONS

GROUP 1	
ANIMAL#	OBSERVATION
1917	NO REMARKABLE OBSERVATIONS
1918	NO REMARKABLE OBSERVATIONS
1919	NO REMARKABLE OBSERVATIONS
1920	NO REMARKABLE OBSERVATIONS
1921	NO REMARKABLE OBSERVATIONS
1922	NO REMARKABLE OBSERVATIONS
1923	NO REMARKABLE OBSERVATIONS
1924	 NO REMARKABLE OBSERVATIONS

Page 115

APPENDIX H

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL MATERNAL NECROPSY OBSERVATIONS

GROUP 2	2000 MG/M3	
ANIMAL#	ORGAN	OBSERVATION
2901		NO REMARKABLE OBSERVATIONS
2902		NO REMARKABLE OBSERVATIONS
2903		NO REMARKABLE OBSERVATIONS
2904		NO REMARKABLE OBSERVATIONS
2905		NO REMARKABLE OBSERVATIONS
2906		NO REMARKABLE OBSERVATIONS
2907		NO REMARKABLE OBSERVATIONS
2908		NO REMARKABLE OBSERVATIONS
2909		NO REMARKABLE OBSERVATIONS
2910		NO REMARKABLE OBSERVATIONS
2911		NO REMARKABLE OBSERVATIONS
2912		NO REMARKABLE OBSERVATIONS
2913		NO REMARKABLE OBSERVATIONS
2914		NO REMARKABLE OBSERVATIONS
2915		NO REMARKABLE OBSERVATIONS
2916		NO REMARKABLE OBSERVATIONS

Page 116

APPENDIX H

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL MATERNAL NECROPSY OBSERVATIONS

GROUP 2	2000 MG/M3		
ANIMAL#		ORGAN	OBSERVATION
2917			NO REMARKABLE OBSERVATIONS
2918			NO REMARKABLE OBSERVATIONS
2919	NP	SALEWSKI'S TEST	NO FOCI PRESENT
2920			NO REMARKABLE OBSERVATIONS
2921			NO REMARKABLE OBSERVATIONS
2922			NO REMARKABLE OBSERVATIONS
2923			NO REMARKABLE OBSERVATIONS
2924			NO REMARKABLE OBSERVATIONS

Page 117

APPENDIX H

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL MATERNAL NECROPSY OBSERVATIONS

GROUP 3	10000 MG/M3	INDIVIDUAL MATERIAL MECKOLOT ODDERVATIONS
ANIMAL#	ORGAN	OBSERVATION
3901		NO REMARKABLE OBSERVATIONS
3902		NO REMARKABLE OBSERVATIONS
3903		NO REMARKABLE OBSERVATIONS
3904		NO REMARKABLE OBSERVATIONS
3905		NO REMARKABLE OBSERVATIONS
3906		NO REMARKABLE OBSERVATIONS
3907		NO REMARKABLE OBSERVATIONS
3908		NO REMARKABLE OBSERVATIONS
3909		NO REMARKABLE OBSERVATIONS
3910		NO REMARKABLE OBSERVATIONS
3911		NO REMARKABLE OBSERVATIONS
3912		NO REMARKABLE OBSERVATIONS
3913		NO REMARKABLE OBSERVATIONS
3914		NO REMARKABLE OBSERVATIONS
3915		NO REMARKABLE OBSERVATIONS
3916		NO REMARKABLE OBSERVATIONS

Page 118

APPENDIX H

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL MATERNAL NECROPSY OBSERVATIONS

GROUP 3	10000 MG/M3	
ANIMAL#	ORGAN	OBSERVATION
3917		NO REMARKABLE OBSERVATIONS
3918		NO REMARKABLE OBSERVATIONS
3919		NO REMARKABLE OBSERVATIONS
3920		NO REMARKABLE OBSERVATIONS
3921		NO REMARKABLE OBSERVATIONS
3922		NO REMARKABLE OBSERVATIONS
3923		NO REMARKABLE OBSERVATIONS
3924		NO REMARKABLE OBSERVATIONS

Page 119

APPENDIX H

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL MATERNAL NECROPSY OBSERVATIONS

GROUP 4	20000 MG/M3		INDIVIDUAL MAIERNAL NECROPSI OBSERVATIONS
 ANIMAL#		ORGAN	OBSERVATION
4901			NO REMARKABLE OBSERVATIONS
4902		EXTERNAL EXAM	ALOPECIA- GENERAL EXTERNAL FINDING CONFIRMED
4903			NO REMARKABLE OBSERVATIONS
4904			NO REMARKABLE OBSERVATIONS
4905			NO REMARKABLE OBSERVATIONS
4906			NO REMARKABLE OBSERVATIONS
4907			NO REMARKABLE OBSERVATIONS
4908	NP	GROSS EXAM	MASS; LEFT MAMMARY GLAND - LOWER LATERAL, 2.0 X 2.5 CM.,TAN, FIRM EXTERNAL FINDING CONFIRMED TISSUE SAVED
		EXTERNAL EXAM	INCISOR MALOCLUDED
		SALEWSKI'S TEST	EXTERNAL FINDING CONFIRMED NO FOCI PRESENT
4909			NO REMARKABLE OBSERVATIONS
4910			NO REMARKABLE OBSERVATIONS
4911			NO REMARKABLE OBSERVATIONS
4912			NO REMARKABLE OBSERVATIONS
4913			NO REMARKABLE OBSERVATIONS

Page 120

APPENDIX H

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL MATERNAL NECROPSY OBSERVATIONS

	20000 MG/M3		
ANIMAL#		ORGAN	OBSERVATION
4914			NO REMARKABLE OBSERVATIONS
4915			NO REMARKABLE OBSERVATIONS
4916			NO REMARKABLE OBSERVATIONS
4917			NO REMARKABLE OBSERVATIONS
4918			NO REMARKABLE OBSERVATIONS
4919	NP	SALEWSKI'S TEST	NO FOCI PRESENT
4920			NO REMARKABLE OBSERVATIONS
4921			NO REMARKABLE OBSERVATIONS
4922			NO REMARKABLE OBSERVATIONS
4923			NO REMARKABLE OBSERVATIONS
4924			NO REMARKABLE OBSERVATIONS

Page 121

APPENDIX I

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL FEMALE REPRODUCTION DATA AND MEAN FETAL WEIGHTS (GRAMS)

GROUP 1	0 MG/M3														
	CORPORA	%PREIMPL.			TUSES			RESORF				EX		GE FETAL BC	DY WEIGHT
ANIMAL#	LUTEA	LOSS	SITES	LIVE	E D	EAD	EARLY	LATE	с то	TAL	MALE	FEMALE	MALES	FEMALES	LITTER
					(n)	olo			(n)	8					
1901	 16	25.0	12	11	0	0.0	 1	0	1	8.3	6	5	6.1	 5.7	5.9
1902	16	25.0	12	12	0	0.0	0	0	0	0.0	8	4	6.1	5.7	6.0
1903	15	6.7	14	14	0	0.0	0	0	0	0.0	7	7	6.3	5.6	5.9
1904	22	31.8	15	15	0	0.0	0	0	0	0.0	8	7	5.7	5.4	5.5
1905	14	0.0	14	13	0	0.0	1	0	1	7.1	б	7	5.4	5.6	5.5
1906	15	6.7	14	13	0	0.0	1	0	1	7.1	6	7	5.6	5.4	5.5
1907	9	0.0	9	9	0	0.0	0	0	0	0.0	6	3	6.4	6.1	6.3
1908	14	7.1	13	12	0	0.0	1	0	1	7.7	7	5	5.9	5.5	5.7
1909	15	0.0	15	15	0	0.0	0	0	0	0.0	7	8	6.4	6.0	6.2
1910	14	7.1	13	13	0	0.0	0	0	0	0.0	б	7	6.0	6.0	6.0
1911	19	10.5	17	15	0	0.0	2	0	2	11.8	б	9	5.7	5.5	5.6
1912	15	0.0	15	15	0	0.0	0	0	0	0.0	5	10	5.4	5.1	5.2
1913	13	0.0	13	11	0	0.0	2	0	2	15.4	5	6	5.8	5.3	5.5
1914	12	0.0	12	12	0	0.0	0	0	0	0.0	5	7	6.1	5.9	6.0
1915	NP														
1916	17	11.8	15	14	0	0.0	1	0	1	6.7	б	8	5.6	5.4	5.5
1917	18	5.6	17	17	0	0.0	0	0	0	0.0	7	10	5.7	5.4	5.5
1918	15	0.0	15	14	0	0.0	0	1	1	6.7	10	4	5.6	5.3	5.5
1919	15	6.7	14	14	0	0.0	0	0	0	0.0	5	9	6.1	5.7	5.8
1920	9	55.6	4	4	0	0.0	0	0	0	0.0	1	3	6.3	6.1	6.1
1921	15	0.0	15	15	0	0.0	0	0	0	0.0	8	7	5.4	5.3	5.4
1922	14	7.1	13	13	0	0.0	0	0	0	0.0	7	6	6.1	5.8	6.0
1923	16	6.3	15	15	0	0.0	0	0	0	0.0	8	7	6.1	5.6	5.9
1924	15	0.0	15	14	0	0.0	1	0	1	6.7	б	8	5.7	5.4	5.6
MEAN	14.9	9.3	13.5	13.0	0.0	0.0	0.4	0.0	0.5	3.4	6.3	6.7	5.9	5.6	5.7
S.D.	2.78	13.46	2.71	2.64	0.00	0.00	0.66	0.21	0.67	4.66	1.70	1.99	0.32	0.28	0.29
N	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23

Page 122

APPENDIX I

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL FEMALE REPRODUCTION DATA AND MEAN FETAL WEIGHTS (GRAMS)

GROUP 2	2000 MG	-													
	CORPORA	%PREIMPL.	IMPLANT		TUSES			RESORE				EX		E FETAL BC	DY WEIGHT
ANIMAL#	LUTEA	LOSS	SITES	LIVE	E D	EAD	EARLY	LATE	Т	OTAL	MALE	FEMALE	MALES	FEMALES	LITTER
					(n)	00			(n) %					
2901	13	15.4	11	10		0.0	1			9.1	7	3	 5.6	5.3	5.5
2902	13	7.7	12	11	0	0.0	1	0	1		6	5	5.9	5.5	5.7
2903	13	7.7	12	11	0	0.0	1	0	1		7	4	5.8	5.5	5.7
2904	14	0.0	14	12	0	0.0	2	0	2		5	7	6.4	6.0	6.1
2905	18	11.1	16	16	0	0.0	0	0	0		6	10	6.1	5.7	5.8
2906	15	13.3	13	12	0	0.0	1	0	1		3	9	6.0	5.9	5.9
2907	13	0.0	13	13	0	0.0	0	0	0	0.0	8	5	5.5	5.2	5.4
2908	21	28.6	15	14	0	0.0	1	0	1		6	8	5.4	5.1	5.2
2909	11	0.0	11	10	0	0.0	1	0	1		5	5	6.3	5.8	6.0
2910	14	0.0	14	14	0	0.0	0	0	0	0.0	4	10	6.3	5.7	5.9
2911	15	6.7	14	14	0	0.0	0	0	0	0.0	5	9	6.1	5.6	5.8
2912	17	0.0	17	17	0	0.0	0	0	0	0.0	12	5	6.0	5.9	6.0
2913	14	0.0	14	14	0	0.0	0	0	0	0.0	б	8	5.7	5.6	5.6
2914	14	0.0	14	4	0	0.0	10	0	10	71.4	1	3	6.6	6.2	6.3
2915	13	7.7	12	11	0	0.0	1	0	1	8.3	3	8	6.0	5.9	5.9
2916	16	6.3	15	15	0	0.0	0	0	0	0.0	8	7	5.5	5.3	5.4
2917	14	7.1	13	12	0	0.0	1	0	1	7.7	5	7	5.5	5.2	5.3
2918	14	7.1	13	13	0	0.0	0	0	0	0.0	9	4	5.9	5.8	5.9
2919	NP														
2920	13	0.0	13	11	0	0.0	1	1	2	15.4	7	4	5.4	5.0	5.3
2921	14	7.1	13	11	0	0.0	2	0	2	15.4	5	6	5.7	5.8	5.7
2922	16	25.0	12	12	0	0.0	0	0	0	0.0	5	7	5.9	5.7	5.8
2923	15	0.0	15	15	0	0.0	0	0	0	0.0	5	10	6.2	5.9	6.0
2924	14	0.0	14	14	0	0.0	0	0	0	0.0	5	9	6.3	5.9	6.1
MEAN	14.5	6.6	13.5	12.4	0.0	0.0	1.0	0.0	1.0	7.9	5.8	6.7	5.9	5.6	5.8
S.D.	2.06	7.99	1.50	2.64	0.00	0.00	2.07	0.21	2.08	14.89	2.24	2.29	0.33	0.33	0.30
N	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23

Page 123

APPENDIX I

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL FEMALE REPRODUCTION DATA AND MEAN FETAL WEIGHTS (GRAMS)

GROUP 3	10000 M	IG/M3	1101110	01111 1 11							101110 (0	10110 /			
	CORPORA	%PREIMPL.	IMPLANT	FE	TUSES			RESORP	TIONS		S	EX	AVERAG	E FETAL BC	DY WEIGHT
ANIMAL#	LUTEA	LOSS	SITES	LIVE	E D	EAD	EARLY	LATE	TC	TAL	MALE	FEMALE	MALES	FEMALES	LITTER
					(n)	00			(n)	00					
3901	11	9.1	10	10	0	0.0	0	0	0	0.0	6	4	 5.9	5.6	5.8
3902	13	0.0	13	12	0	0.0	1	0	1	7.7	6	6	5.6	5.5	5.6
3903	14	7.1	13	13	0	0.0	0	0	0	0.0	5	8	5.2	5.1	5.1
3904	13	0.0	13	13	0	0.0	0	0	0	0.0	8	5	6.1	5.5	5.8
3905	15	0.0	15	15	0	0.0	0	0	0	0.0	8	7	5.3	4.9	5.1
3906	14	0.0	14	14	0	0.0	0	0	0	0.0	7	7	5.5	5.6	5.6
3907	13	0.0	13	11	0	0.0	2	0	2	15.4	6	5	5.8	5.5	5.6
3908	13	0.0	13	10	0	0.0	3	0	3	23.1	4	6	5.7	5.4	5.5
3909	14	7.1	13	12	0	0.0	1	0	1	7.7	6	6	5.9	5.6	5.8
3910	16	12.5	14	14	0	0.0	0	0	0	0.0	7	7	6.1	5.7	5.9
3911	16	0.0	16	16	0	0.0	0	0	0	0.0	5	11	5.9	5.3	5.5
3912	14	7.1	13	12	0	0.0	1	0	1	7.7	5	7	6.1	5.9	6.0
3913	20	60.0	8	8	0	0.0	0	0	0	0.0	6	2	6.5	5.9	6.4
3914	18	16.7	15	14	0	0.0	1	0	1	6.7	6	8	5.5	5.2	5.3
3915	10	70.0	3	2	0	0.0	1	0	1	33.3	1	1	6.4	5.3	5.8
3916	16	12.5	14	14	0	0.0	0	0	0	0.0	9	5	5.7	5.6	5.7
3917	21	33.3	14	14	0	0.0	0	0	0	0.0	4	10	5.5	5.2	5.3
3918	15	0.0	15	13	0	0.0	2	0	2	13.3	5	8	5.8	5.4	5.5
3919	13	0.0	13	13	0	0.0	0	0	0	0.0	8	5	5.6	5.3	5.5
3920	14	0.0	14	14	0	0.0	0	0	0	0.0	8	6	6.1	5.8	6.0
3921	13	7.7	12	11	0	0.0	1	0	1	8.3	5	6	5.8	5.8	5.8
3922	17	0.0	17	17	0	0.0	0	0	0	0.0	8	9	6.0	5.6	5.8
3923	16	0.0	16	16	0	0.0	0	0	0	0.0	13	3	5.6	5.5	5.6
3924	15	6.7	14	14	0	0.0	0	0	0	0.0	8	б	5.9	5.6	5.8
MEAN	14.8	10.4	13.1	12.6	0.0	0.0	0.5	0.0	0.5	5.1	6.4	6.2	5.8	5.5	5.7
S.D.	2.52	18.58	2.85	3.06	0.00	0.00	0.83	0.00	0.83	8.64	2.26	2.32	0.32	0.25	0.28
N	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24

Page 124

APPENDIX I

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL FEMALE REPRODUCTION DATA AND MEAN FETAL WEIGHTS (GRAMS)

GROUP 4	20000 M											,			
	CORPORA	%PREIMPL.			TUSES			RESORF				SEX		JE FETAL BC	DY WEIGHT
ANIMAL#	LUTEA	LOSS	SITES	LIVE	E D	EAD	EARLY	LATE	т	DTAL	MALE	FEMALE	MALES	FEMALES	LITTER
					(n)	00			(n)	8					
4901	15	6.7	 14	13	0	0.0	1	0	1	7.1	6	7	5.6	5.3	5.5
4902	11	0.0	11	10	0	0.0	1	0	1	9.1	3	7	5.8	5.3	5.5
4903	17	11.8	15	14	0	0.0	1	0	1	6.7	9	5	5.8	5.6	5.7
4904	18	0.0	18	18	0	0.0	0	0	0	0.0	10	8	5.4	5.0	5.2
4905	16	0.0	16	16	0	0.0	0	0	0	0.0	9	7	5.4	5.0	5.2
4906	19	15.8	16	16	0	0.0	0	0	0	0.0	7	9	5.5	5.3	5.4
4907	13	15.4	11	10	0	0.0	1	0	1	9.1	4	6	6.0	5.6	5.7
4908	NP														
4909	11	9.1	10	9	0	0.0	1	0	1	10.0	б	3	6.0	5.7	5.9
4910	14	0.0	14	13	0	0.0	1	0	1	7.1	8	5	5.7	5.5	5.6
4911	17	0.0	17	16	0	0.0	1	0	1	5.9	б	10	5.6	5.3	5.4
4912	11	0.0	11	11	0	0.0	0	0	0	0.0	б	5	6.5	5.7	6.2
4913	15	6.7	14	14	0	0.0	0	0	0	0.0	4	10	6.0	5.7	5.8
4914	14	14.3	12	10	0	0.0	2	0	2	16.7	б	4	6.3	5.9	6.1
4915	16	6.3	15	14	0	0.0	1	0	1	6.7	3	11	5.6	5.1	5.2
4916	16	0.0	16	16	0	0.0	0	0	0	0.0	10	6	5.0	4.7	4.9
4917	16	6.3	15	14	0	0.0	1	0	1	6.7	б	8	6.0	5.8	5.9
4918	21	38.1	13	13	0	0.0	0	0	0	0.0	4	9	5.9	5.3	5.5
4919	NP														
4920	14	14.3	12	11	0	0.0	1	0	1	8.3	5	6	5.4	5.1	5.2
4921	13	15.4	11	11	0	0.0	0	0	0	0.0	6	5	5.7	5.4	5.6
4922	16	6.3	15	15	0	0.0	0	0	0	0.0	5	10	5.4	5.2	5.2
4923	13	0.0	13	11	0	0.0	2	0	2		7	4	5.7	5.2	5.5
4924	18	0.0	18	17	0	0.0	1	0	1		5	12	5.6	5.4	5.4
MEAN	15.2	7.6	14.0	13.3	0.0	0.0	0.7	0.0	0.7	5.2	6.1	7.1	5.7	5.4	5.5
S.D.	2.63	9.14	2.38	2.60	0.00	0.00	0.65	0.00	0.65	5.15	2.05	2.49	0.33	0.31	0.32
N	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22

GROUP 1 0 MG/M3

Huntingdon Life Sciences 05-4287

Page 125

APPENDIX J

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL GRAVID UTERINE WEIGHT AND NET BODY WEIGHT CHANGE (GRAMS)

	UTERUS	ADJUSTED	NET WEIGHT CHANGE	WEIGHT CHANGE
ANIMAL#	WEIGHT	WEIGHT	FROM DAY 5	FROM DAY 5
1901	91	298	68	159
1902	94	265	38	132
1902	112	205	49	161
1905	111	286	38	149
1905	98	295	41	139
1905	98	308	44	143
1907	72	262	44	116
1908	92	308	69	161
1909	119	281	42	161
1910	104	268	29	132
1910	117	208	35	152
1911		294	35	133
	NT	260	20	
1913	84	269	30	114
1914	103	281	36	139
1915x N		225	45	21
1916	108	306	45	153
1917	126	289	35	161
1918	108	326	57	165
1919	113	255	32	145
1920	36	277	45	81
1921	108	274	38	146
1922	106	276	34	141
1923	121	304	57	179
1924	107	298	39	146
MEAN	101.	286.	43.	144.
S.D.	19.4	18.1	11.1	20.6
N	22	22	22	23

UTERUS WEIGHT = ABSOLUTE GRAVID UTERINE WEIGHT ADJUSTED WEIGHT = TERMINAL BODY WEIGHT - UTERUS WEIGHT NET WEIGHT CHANGE FROM DAY 5 = ADJUSTED WEIGHT - DAY 5 BODY WEIGHT WEIGHT CHANGE FROM DAY 5 = TERMINAL BODY WEIGHT - DAY 5 BODY WEIGHT

NP=NOT PREGNANT NT=NOT TAKEN x=EXCLUDED FROM MEAN

GROUP 2 2000 MG/M3

Huntingdon Life Sciences 05-4287

Page 126

APPENDIX J

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL GRAVID UTERINE WEIGHT AND NET BODY WEIGHT CHANGE (GRAMS)

	UTERUS	ADJUSTED	NET WEIGHT CHANGE	WEIGHT CHANGE	
ANIMAL#	WEIGHT	WEIGHT	FROM DAY 5	FROM DAY 5	
2901	73	253	32	105	
2902	85	247	17	102	
2903	86	268	32	119	
2904	98	299	55	153	
2905	120	284	33	153	
2906	95	290	33	128	
2907	95	270	50	145	
2908	95	259	35	130	
2909	86	278	43	129	
2910	109	286	38	148	
2911	109	292	35	143	
2912	134	320	40	175	
2913	101	271	37	138	
2914	37	290	46	84	
2915	91	308	52	143	
2916	113	304	47	161	
2917	86	295	34	120	
2918	105	300	23	128	
2919x	NP			23	
2920	81	266	36	118	
2921	88	282	43	132	
2922	93	257	27	121	
2923	126	300	42	168	
2924	113	283	30	143	
EAN	97.	283.	37.	134.	
.D.	19.8	19.0	9.1	21.5	
N	23	23	23	23	

NET WEIGHT CHANGE FROM DAY 5 = ADJUSTED WEIGHT - DAY 5 BODY WEIGHT WEIGHT CHANGE FROM DAY 5 = TERMINAL BODY WEIGHT - DAY 5 BODY WEIGHT

x=EXCLUDED FROM MEAN

ADJUSTED WEIGHT = TERMINAL BODY WEIGHT - UTERUS WEIGHT

NP=NOT PREGNANT

UTERUS WEIGHT = ABSOLUTE GRAVID UTERINE WEIGHT

Page 127

APPENDIX J

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL GRAVID UTERINE WEIGHT AND NET BODY WEIGHT CHANGE (GRAMS)

GROUP 3	10000 MG/M3				
	UTERUS	ADJUSTED	NET WEIGHT CHANGE	WEIGHT CHANGE	
ANIMAL#	WEIGHT	WEIGHT	FROM DAY 5	FROM DAY 5	
3901	80	246	16	96	
3902	88	275	33	121	
3903	95	280	49	144	
3904	103	276	31	133	
3905	107	281	33	140	
3906	104	288	43	146	
3907	83	261	43	126	
3908	75	263	38	113	
3909	90	280	36	126	
3910	108	269	23	131	
3911	117	283	29	146	
3912	96	303	28	124	
3913	68	302	67	135	
3914	100	289	39	139	
3915	19	305	47	67	
3916	110	298	41	151	
3917	100	308	51	151	
3918	101	293	30	131	
3919	93	275	48	141	
3920	114	259	33	147	
3921	86	248	19	105	
3922	136	272	33	169	
3923	121	268	19	140	
3924	112	286	28	140	
MEAN	96.	280.	36.	132.	
S.D.	22.5	17.1	11.7	21.0	
Ν	24	24	24	24	

UTERUS WEIGHT = ABSOLUTE GRAVID UTERINE WEIGHT ADJUSTED WEIGHT = TERMINAL BODY WEIGHT - UTERUS WEIGHT NET WEIGHT CHANGE FROM DAY 5 = ADJUSTED WEIGHT - DAY 5 BODY WEIGHT WEIGHT CHANGE FROM DAY 5 = TERMINAL BODY WEIGHT - DAY 5 BODY WEIGHT GROUP 4 20000 MG/M3

NP=NOT PREGNANT

Huntingdon Life Sciences 05-4287

Page 128

APPENDIX J

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL GRAVID UTERINE WEIGHT AND NET BODY WEIGHT CHANGE (GRAMS)

1001 4	20000 110/11	-				
	UTERU	B ADJUS	TED NET WEIGH	T CHANGE	WEIGHT CHANGE	
ANIMAL#	WEIGH	r WEIG	HT FROM DA	Y 5	FROM DAY 5	
4901	93	. 2	.37 1	7	108	
4902	7	3 2	.74 4	9	127	
4903	10	3 2	2 2	9	132	
4904	12	3 2	.57 2	1	144	
4905	11) 2	273 2	1	131	
4906	11) 2	270 2	0	139	
4907	7) 2	4	5	123	
4908x	NP				14	
4909	7) 2	254 2	3	93	
4910	N	2			144	
4911	11	3 2	274 2	0	133	
4912	9.	1 2	.92 3	5	129	
4913	10	5 2	.67 2	1	127	
4914	84	1 2	96 4	2	126	
4915	9'	7 2	275 2	2	118	
4916	10	3 2	.81 2	7	135	
4917	11-	1 3	303 3	4	148	
4918	9.	1 3	300 3	5	129	
4919x	NP				1	
4920	7	5 2	.72 4	7	124	
4921	84	1 2	274 4	0	124	
4922	10	1 2	1 1	6	120	
4923	83	. 2	270 2	3	104	
4924	PART 12	lx 3	18x 4	7x	171	
EAN	96	. 27	3. 29		129.	
.D.	15.	7 15	.9 10.	6	16.0	
N	2)	20 2	0	22	

PART=PARTIAL DELIVERY; 5 LIVE PUPS DELIVERED x=EXCLUDED FROM MEAN

UTERUS WEIGHT = ABSOLUTE GRAVID UTERINE WEIGHT ADJUSTED WEIGHT = TERMINAL BODY WEIGHT - UTERUS WEIGHT NET WEIGHT CHANGE FROM DAY 5 = ADJUSTED WEIGHT - DAY 5 BODY WEIGHT WEIGHT CHANGE FROM DAY 5 = TERMINAL BODY WEIGHT - DAY 5 BODY WEIGHT

NT=NOT TAKEN

GROUP 1 0 MG/M3

Huntingdon Life Sciences 05-4287

Page 129

APPENDIX K

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL FETAL BODY WEIGHTS (GRAMS)

FEMALE#	MEAN	FET	rus#																	
		1	2	3	4	5	б	7	8	9	10	11	12	13	14	15	16	17	18	19
1901	5.9	5.6	5.9	5.9	5.8	6.0/	6.3	5.3	5.4	E	6.0	6.2	6.5							
1901	6.0	5.6	6.6	6.0	5.7	6.3	5.9/	6.3	5.9	5.6	5.9	6.0	6.0							
1902	5.9	5.7	6.3	5.3	5.6	6.2	6.4	5.6	5.5	6.2/	6.2	6.0	5.4	6.2	6.5					
1905	5.5	5.3	5.1	5.6	5.4	5.7/	5.4	5.9	6.0	5.7	5.4	5.3	5.6	5.5	5.7	5.3				
1904	5.5	3.2	5.7	6.4	5.4 E	5.6	5.6/	6.1	5.9	5.8	5.8	5.3	5.7	5.2	5.3	5.5				
1905	5.5	5.6	5.3	5.2	5.6	5.4	5.4	E /	6.1	5.4	5.8	5.2	5.3	5.8	5.4					
1900	6.3	6.4	6.3	6.0	6.2/	6.2	6.1	6.6	6.5	6.3	5.0	5.2	5.5	5.0	5.4					
1907	5.7	6.0	5.8	6.4	5.6	5.4	5.7/	5.5	E.	6.0	6.1	5.3	5.8	5.3						
1900	6.2	6.3	6.6	6.1	6.4	6.3/	6.2	6.0	5.7	6.7	6.2	6.4	6.4	5.7	5.9	6.1				
1910	6.0	5.9	6.0	5.2	6.0	6.3	5.7	5.9	6.1	5.8	6.2	6.2/	6.4	6.3	5.5	0.1				
1910	5.6	5.8	5.8	5.5	5.5	E	5.6	5.4/	5.6	5.4	5.7	5.4	5.7	5.6	Е	6.2	5.6	5.2		
1912	5.2	5.6	5.0	5.3	5.0	4.7	5.0	5.2	5.2	5.4/	5.7	5.1	5.2	5.2	5.3	5.6	5.0	5.2		
1912	5.5	5.0	5.9	5.5 E	5.2	5.5	5.9	5.2 E /	5.6	5.6	5.5	5.4	6.1	5.3	5.5	5.0				
1915	6.0	6.0	6.3	6.4	6.1/	6.1	5.4	5.8	5.8	6.2	5.9	6.1	5.9	5.5						
1914	NP	0.0	0.5	0.4	0.1/	0.1	5.4	5.0	5.0	0.2	5.5	0.1	5.5							
1915	5.5	5.3	5.4	5.5	5.2	5.6	5.7	5.4	6.0/	Е	5.6	5.6	5.0	5.6	5.3	5.5				
1910	5.5	5.5	5.1	5.7	5.4	5.1	5.7	5.2	5.2	5.5	5.7	6.1/	5.3	5.7	5.4	5.9	5.5	5.7		
1918	5.5	5.4	5.3	5.6	5.6	5.7	5.4/	6.0	5.7	5.1	5.5	L U.17	5.5	5.4	5.9	5.2	5.5	5.7		
1910	5.8	5.6	6.2	6.0	6.2	5.3	5.0	5.8	5.7/	5.9	6.6	5.6	5.7	6.0	6.1	5.2				
1920	6.1 /	6.2	6.0	6.1	6.3	5.5	5.0	5.0	5.77	5.5	0.0	5.0	5.7	0.0	0.1					
1920	5.4	5.1	5.3	5.1	5.6	5.2	5.5	5.3/	5.5	5.9	5.9	4.8	5.3	5.2	52	5.4				
1921	6.0	5.8	6.5	5.6	5.9	5.8/	6.5	6.2	6.0	6.0	6.1	5.7	5.4	6.0	5.2	5.1				
1922	5.9	5.8 6.1	5.9	5.5	5.6	6.0	5.5	5.2	5.7	6.1/	6.2	5.8	6.1	5.8	6.4	6.1				
1923	5.6	5.7	5.9 E	5.9	5.6	5.3	5.8	5.3	5.6/	5.3	5.4	5.7	5.6	5.5	5.6	5.3				
1924	5.0	5.7	<u>.</u>	5.9	5.0	5.5	5.0	5.5	5.07	5.5	5.1	5.7	5.0	5.5	5.0	5.5				

MEAN 5.7 S.D. 0.29

N

E-Early resorption L-Late resorption /-Denotes position of cervix

23

GROUP 2 2000 MG/M3

Huntingdon Life Sciences 05-4287

Page 130

APPENDIX K

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL FETAL BODY WEIGHTS (GRAMS)

FEMALE#	MEAN	FEI	US#																	
		1	2	3	4	5	б	7	8	9	10	11	12	13	14	15	16	17	18	19
2901	5.5	5.4/	5.6	5.3	5.3	5.7	5.1	5.6	5.3	Е	6.1	5.9								
2902	5.7	5.2	5.7	6.0	5.7	5.5	6.1	5.9/	5.3	6.2	Е	5.5	5.9							
2903	5.7	5.1	5.8	5.3	5.5	5.5	Е	5.9/	5.9	5.9	5.9	5.9	6.1							
2904	6.1	5.9	5.9	6.4	6.0	5.8	5.7	6.4	Е	Е /	6.8	5.9	6.4	6.3	6.2					
2905	5.8	6.1	6.2	5.9	5.6	5.6	5.9	5.9	5.7	6.3	5.6/	6.2	5.8	5.5	5.8	6.1	5.2			
2906	5.9	6.0	5.8	6.1/	6.0	5.5	Е	5.5	5.9	6.2	6.1	6.2	6.1	5.8						
2907	5.4	4.9	5.8	5.1	6.0	5.4	5.1	5.5/	5.7	5.3	5.4	5.2	5.2	5.3						
2908	5.2	5.3	4.9	4.9	5.7	5.6	5.1/	5.1	5.6	4.8	Е	5.3	5.4	4.9	5.1	5.2				
2909	6.0	5.7	Е	6.5	6.4	5.8/	6.4	6.2	5.8	5.7	5.9	5.8								
2910	5.9	5.7	5.5	6.0	5.7	5.3	5.8/	6.1	6.4	6.0	6.2	5.9	6.5	5.2	6.4					
2911	5.8	5.5	6.0	5.4	5.7	5.7/	5.4	5.6	5.4	5.7	6.3	6.1	5.7	6.2	6.1					
2912	6.0	6.4	5.9	5.9	6.4	6.0	5.8	6.0	5.8	6.1	6.1/	6.1	5.9	6.1	6.3	5.5	5.9	5.8		
2913	5.6	5.6	5.6	5.5	5.7	5.6	5.7	5.5	5.7	5.1/	5.6	5.6	6.0	5.6	5.8					
2914	6.3	Е	Е	6.1	Е	Е /	Е	Е	Е	6.6	6.4	Е	Е	Е	6.2					
2915	5.9	5.4	Е	6.2	6.0	6.2	5.7	6.2	5.3/	5.9	6.2	6.1	5.6							
2916	5.4	5.5	5.3	5.3	5.1	5.6	5.3	4.9	5.8/	5.4	5.7	5.4	5.6	5.7	5.2	5.5				
2917	5.3	5.2	Е	5.0	5.5	5.0/	5.6	5.6	5.4	5.6	5.4	4.9	5.3	5.3						
2918	5.9	5.7	6.0	5.9	6.0	5.3	5.4	6.1	5.4	5.9	6.0/	6.1	6.5	6.3						
2919	NP																			
2920	5.3	5.5	5.7	L	5.4/	5.1	5.3	5.2	4.9	Е	5.1	4.5	5.6	5.3						
2921	5.7	E	Е	5.7	6.0	5.4	5.8	5.6	5.7	6.0/	5.8	5.6	6.0	5.6						
2922	5.8	5.4	6.0	5.9	5.4	5.8	5.6/	6.0	5.9	5.8	6.0	5.8	5.8							
2923	6.0	5.4	5.9	5.8	6.1	6.3	6.3/	6.5	6.4	5.7	6.0	6.2	6.3	6.0	5.4	6.1				
2924	6.1	5.9	6.5	5.9	6.5	6.1	6.0	5.3/	5.9	5.7	6.1	6.5	6.1	6.3	6.2					

MEAN 5.8 S.D. 0.30

N

E-Early resorption L-Late resorption /-Denotes position of cervix

23

GROUP 3 10000 MG/M3

Huntingdon Life Sciences 05-4287

Page 131

APPENDIX K

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL FETAL BODY WEIGHTS (GRAMS)

FEMALE#	MEAN	FE	TUS#																	
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
3901	5.8	5.5	6.0	5.9	5.7	5.7	6.2	5.7/	6.0	5.1	5.9									
3901	5.6	5.6	5.9	5.3	5.7 E	5.2	5.5	5.2	5.4	5.8/	5.6	5.8	5.8	5.6						
3902	5.0	5.4	5.2	5.6	5.2	5.3/	5.0	5.2	4.9	5.0	4.8	5.0	4.8	5.3						
3903	5.1	5.4 5.4	5.2	5.0	5.2 4.9			5.1 5.8/		5.0		5.1 5.6	4.0 5.8							
						6.0	6.2		6.1		6.3			5.9		F 0				
3905	5.1	5.1	5.4	4.7	4.9	4.8	4.9	4.8	5.2	4.7	5.4/	5.3	5.9	5.0	5.5	5.2				
3906	5.6	5.4	5.7	4.6	5.2	5.5	5.6	5.5	5.5	5.6	5.9/	5.9	5.9	6.1	5.8					
3907	5.6	5.7	E	6.0	5.6	5.6	5.3/	6.0	5.5	E	5.6	5.4	5.7	5.8						
3908	5.5	5.6	5.7	E	6.1	5.1	5.2	5.4/	5.6	5.3	5.1	Е	Е	5.8						
3909	5.8	6.0	5.8	5.6	Е	5.8	5.9	5.6	5.3	5.4	5.7/	6.1	6.1	5.7						
3910	5.9	5.9	6.0	6.2	5.8	6.0	6.0/	5.7	6.0	6.2	4.3	6.0	6.4	5.9	6.4					
3911	5.5	5.7	6.3	5.9	6.0	6.2	5.5	5.6	3.7	5.7	5.4/	3.3	6.2	5.5	5.7	5.6	6.0			
3912	6.0	6.1	Е	5.9	6.4	6.3/	6.3	5.8	5.8	5.9	6.0	5.9	6.0	5.7						
3913	6.4 /	7.0	6.3	5.8	6.7	6.2	6.4	6.4	5.9											
3914	5.3	5.2	5.3	5.3	5.8	5.0	Ε /	5.6	5.4	5.2	5.4	4.9	5.3	5.0	5.3	5.9				
3915	5.8 /	Е	6.4	5.3																
3916	5.7	5.6	5.5	5.7	5.5	5.8	5.4	5.9/	5.7	5.7	5.6	5.6	5.7	5.8	5.8					
3917	5.3	4.6	5.3	5.2	5.6	5.5/	5.4	5.0	5.4	5.7	4.9	4.8	5.5	5.7	5.3					
3918	5.5	5.7	Е	5.6	5.8	5.8	5.9/	Е	5.5	5.3	5.7	5.5	5.4	5.1	4.8	5.7				
3919	5.5	5.6	5.8	5.5	5.8	5.1	5.5/	5.9	5.7	4.9	5.3	5.6	5.7	5.3						
3920	6.0	6.1	5.7	6.7	6.4	6.0	5.5	6.2/	6.2	5.8	5.8	5.8	6.1	5.5	5.8					
3921	5.8	5.6	6.3	6.0	Е	5.6	6.2	5.5/	6.0	6.1	5.9	5.8	4.9							
3922	5.8	6.2	6.0	5.8	5.5	5.8	5.3	5.7	5.6	5.8/	5.8	5.7	5.2	5.5	6.2	5.7	6.3	6.1		
3923	5.6	5.5	5.5	5.1	5.5	5.5	5.8	5.8	5.7/	5.6	5.7	5.5	5.4	6.1	5.3	5.7	5.5			
3924	5.8	5.6	5.9	5.8	6.0	6.0	5.2	5.6	5.8/	6.3	5.8	5.8	5.8	6.0	5.6	5.7	5.5			
5724	5.0	5.0	5.7	5.0	0.0	0.0	5.2	5.0	5.0/	0.5	5.0	5.0	5.0	0.0	5.0					

MEAN 5.7 S.D. 0.28

N

E-Early resorption /-Denotes position of cervix

24

GROUP 4 20000 MG/M3

Huntingdon Life Sciences 05-4287

Page 132

APPENDIX K

GASOLINE DIPE VAPOR CONDENSATE: EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

INDIVIDUAL FETAL BODY WEIGHTS (GRAMS)

FEMALE#	MEAN	FEI	rus#																	
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
			_				_	_			_	_			_					
4901	5.5	5.7	5.9	5.6	5.3/	5.5	5.4	5.2	5.3	5.4	5.6	5.4	Е	5.2	5.4					
4902	5.5	6.0	5.5	Е	5.6	5.4/	5.4	5.3	5.3	6.0	5.1	5.1								
4903	5.7	5.6	5.7	5.7	5.7	Е	5.9/	5.4	5.9	5.2	5.8	5.5	6.1	6.0	5.8	5.7				
4904	5.2	4.8	5.1	5.8	5.1	4.9	4.8	5.1/	5.5	5.1	5.1	5.8	5.2	5.3	4.9	5.3	4.9	5.1	5.6	
4905	5.2	5.2	5.3	5.1	5.5	5.2	5.6	5.1	5.0	4.5	4.9/	5.2	5.2	5.7	5.5	5.1	5.4			
4906	5.4	5.5	5.4	5.3	5.4	5.1	5.9	5.5	5.4/	5.5	5.0	5.0	5.3	5.4	5.4	5.6	5.3			
4907	5.7	6.0	5.6	5.6	6.1	5.6	5.6/	Е	5.7	6.0	5.4	5.9								
4908	NP																			
4909	5.9	6.1	6.0	Е	5.8	6.3	5.4	6.2	6.1/	6.0	5.4									
4910	5.6	5.5	5.7	5.2	6.0	5.8	5.8	5.7	5.7/	Е	5.5	5.0	5.8	5.8	5.8					
4911	5.4	5.1	5.6	5.1	5.6	5.8	4.4	5.3	5.4	5.4	5.5	5.6	5.4/	E	5.1	5.6	5.6	5.9		
4912	6.2	6.7	6.7	5.3	6.0	6.3	6.6/	5.6	5.8	5.7	6.0	6.9								
4913	5.8	6.0	5.8	5.6	5.7	5.8/	6.1	5.7	5.4	5.3	6.1	6.0	5.9	5.8	5.6					
4914	6.1	5.9	Е	6.5	5.9	6.3	Е	5.9	6.2/	5.7	6.4	6.1	6.6							
4915	5.2	5.5	4.7	5.3	5.2	5.4	Е	5.3	5.1	4.3	5.2/	4.8	6.1	5.4	5.5	5.0				
4916	4.9	5.0	5.4	4.8	4.9	4.7	4.5	5.3/	5.1	5.0	5.1	4.9	4.8	4.2	5.2	4.7	4.8			
4917	5.9	6.0	5.9	5.8	5.6	6.0	5.7	5.7	Е	6.2/	6.0	5.8	5.8	6.1	6.0	6.1				
4918	5.5	5.2	5.3	5.3	5.4	5.2/	5.5	5.4	6.2	5.3	5.3	5.9	5.8	5.7						
4919	NP																			
4920	5.2	5.2	5.0	Е	5.2	5.1	5.1/	5.3	5.4	5.8	5.0	5.2	5.3							
4921	5.6	5.4	5.8	5.2	5.6	6.4	5.6/	5.3	5.3	5.8	5.6	5.0								
4922	5.2	5.0	4.9	5.8	5.0	5.1	5.6	5.3	5.3	5.3/	5.3	5.2	5.3	4.9	5.2	5.5				
4923	5.5	5.3	5.2	5.6	5.9	4.8	5.5	5.6	5.8/	5.2	5.9	Е	5.8	Е						
4924	5.4	4.7	5.7	5.3	5.9	5.2	5.6	5.6	5.4	5.3	5.8	Е	5.5/	5.6	5.1	5.6	5.2	5.8	5.4	

MEAN 5.5 S.D. 0.32

N

E-Early resorption

/-Denotes position of cervix

22

Huntingdon Life S	ciences		05-4287 211-DIPE-DEV	Page 133 Final Report						
Females INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL OBSERVATIONS APPENDIX L										
AnimalFetusWeightAbnormalities (only fetuses with abnormalities are listed)NumberExamNumberSex(g)FateMajorabnormalities in CAPITALS										
Group 1 - 0 MG/M ³										
1901 6s, 5v	12 M	6.5	s Sternebra(e) malaligned, #4 and #5, slight							
	3 F 10 M 11 M	6.2	 Rib(s) 14th rudimentary, left Additional subclavian artery, left Rib(s) 14th rudimentary, bilateral 							
	6 F 11 F		s Hyoid body/arch(es), unossified body / Renal papilla (e) not fully developed (grade 1), left							
1905 7s, 6v 1 M 3.2 s ANAL ATRESIA AND FILAMENTOUS TAIL VERTEBRAL AGENESIS: SACRAL VERTEBRAE #1 AND #2 SMALL IN SIZE; SACRAL VERTEBRAE #3 AND #4 AND ALL CAUDAL VERTEBRAE ABSENT; ILIA AND ISCHIA CLOSELY APPROXIMATED Sternebra(e) 5 and/or 6 unossified, #5										
	2 F		v Undescended thymic tissue, right							
1908 6s, 6v	6 F	5.7	s 25 presacral vertebra(e) Rib(s) 13th rudimentary, right							
	8 F 9 M	6.7	 Undescended thymic tissue, left Sternebra(e) malaligned, #2 through #4, slight 							

Hunting	gdon Life	Scier	nces		05-4287 211-DIPE-DEV	Page 134 Final Report				
Fe	APPENDIX L									
AnimalFetusWeightAbnormalities (only fetuses with abnormalities are listed)NumberExamNumberSex(g)FateMajor abnormalities in CAPITALS										
Group 1	Group 1 - 0 MG/M ³									
1910	6s, 7v	2 9	F F	6.0 5.8	S V	Sternebra(e) malaligned, #4, slight Left umbilical artery				
1911	8s, 7v	4 9	M M	5.5 5.4	V V	Undescended thymic tissue, left Undescended thymic tissue, right				
1912	7s, 8v	3 9 12	F F F	5.3 5.4 5.2	v v s	Undescended thymic tissue, right Ureter(s) distended, bilateral				
1913	6s, 5v	6	М	5.9	S	Sternebra(e) malaligned, #3 through #5, slight to moderat	e			
1914	6s, 6v	8	F	5.8	S	Sternebra(e) malaligned, #4 and #5, slight				
1916	7s, 7v	1 3	F M	5.3 5.5	v v	Undescended thymic tissue, right Undescended thymic tissue, left				

Hunting	don Life	Scienc	es			05-4287 211-DIPE-DEV	Page 135 Final Report	
							· · · · ·	
Fer	Females INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL OBSERVATIONS							
Animal Number	Exam N	Fetus Numbei		Weight (g)	Fate	Abnormalities (only fetuses with abnormalities are listed) Major abnormalities in CAPITALS		
Group 1	- 0 MG	6∕M³						
1918	7s, 7v	11	L			Crown-rump distance 2.4 cm		
1919	7s, 7v	9 11 13	F F F	5.9 5.6 6.0	S S S	Sternebra(e) malaligned, #4 and #5, slight Sternebra(e) malaligned, #4 and #5, slight Sternebra(e) malaligned, #4 and #5, slight		
1921	8s, 7v	2 6 12	F M M	5.3 5.5 5.3	v v v	Innominate artery absent Undescended thymic tissue, left Undescended thymic tissue, right Displaced testis medially, left		
1923	8s, 7v	7	F	5.2	S	Sternebra(e) malaligned,#3 and #4, slight to moderate		
1924	7s, 7v	9	F	5.3	S	Sternebra(e) malaligned, #3 through #5, slight		

s = skeletal examination, v = visceral examination, M=Male, F=Female, L=Late Resorption, g=grams

Huntingdon Life S	Sciences		05-4287 Page 136 211-DIPE-DEV Final Report
Females	AL EXTERNAL, VISCERAL AND SKELETAL OBSERVATIONS APPENDIX L		
Animal I Number Exam N	Fetus umber Sex	Weight (g) F	Abnormalities (only fetuses with abnormalities are listed) ate Major abnormalities in CAPITALS
Group 2 - 2000	MG/M ³		
2901 5s, 5v	2 M 3 F 8 M	5.6 5.3 5.3	 v Undescended thymic tissue, left s Sternebra(e) malaligned, #3 through #4, slight v Undescended thymic tissue, bilateral
2902 5s, 6v	2 F	5.7	s Sternebra(e) malaligned, #3 and #4, slight
2903 6s, 5v	2 M 3 M	5.8 5.3	 V Undescended thymic tissue, left s Sternebra(e) malaligned, #4 and #5 Rib(s) 14th rudimentary, right
2904 6s, 6v	14 F	6.2	s RIGHT FORELIMB SHORTENED
2905 8s, 8v	1 M 7 F 10 F	6.1 5.9 5.6	 s Sternebra(e) malaligned, #3 through #5, slight s Sternebra(e) malaligned, #4 and #5, slight v Undescended thymic tissue, right
2908 7s, 7v	14 M	5.1	v Left umbilical artery
2909 5s, 5v	6 M 11 M	6.4 5.8	s Rib(s) 14th rudimentary, rightv Left umbilical artery

Huntingdon Life S	Sciences	ciences 05-4287 211-DIPE-DEV									
Females	INDIV	IDUAL FET	AL	EXTERNAL, VISCERAL AND SKELETAL OBSERVATIONS	APPENDIX L						
Animal F Number Exam Nu	etus umber Sex	Weight (g)	Fate	Abnormalities (only fetuses with abnormalities are listed) Major abnormalities in CAPITALS							
Group 2 - 2000 MG/M ³											
	3 F 4 F 5 F 6 F 8 F 13 F	6.0 5.7 5.3 5.8 6.4 5.2	V S V S V	Undescended thymic tissue, bilateral Rib(s) 14th rudimentary, bilateral Undescended thymic tissue, left Rib(s) 14th rudimentary, bilateral Rib(s) 14th rudimentary, left Undescended thymic tissue, right							
2912 8s, 9v	4 M 10 F 15 M 17 F	6.4 6.1 5.5 5.8	S S V V	7th cervical rib(s) present, left SHORT MANDIBLE, moderate Undescended thymic tissue, left Left umbilical artery Left umbilical artery							
2913 7s, 7v	1 M	5.6	S	Sternebra(e) malaligned, #4 and #5, slight Rib(s) 14th rudimentary, bilateral							
	4 M 13 F	5.5 5.3	S V	Rib(s) 14th rudimentary, bilateral Undescended thymic tissue, bilateral							
2918 6s, 7v	2 M	6.0	S	Sternebra(e) malaligned, #4 and #5, slight							

Hunting	gdon Life	Scienc	ces		Page 138					
						211-DIPE-DEV	Final Report			
Fe	males			JUAL FF	ΤΑΙ	EXTERNAL VISCERAL AND SKELETAL OBSERVATIONS	APPENDIX L			
Females INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL OBSERVATIONS APPENDIX L Animal Fetus Weight Abnormalities (only fetuses with abnormalities are listed) Number Number Exam Number Sex (g) Fate Major abnormalities in CAPITALS										
Group 2 - 2000 MG/M ³										
2920	5s, 6v	3 12	L M	5.6	S	Crown-rump distance 2.9 cm Sternebra(e) malaligned, #4 and #5, slight				
2921	5s, 5v	3	М	5.7	S	Sternebra(e) malaligned, #3, slight				
2923	8s, 7v	1 7 14	F F F	5.4 6.5 5.4	s s v	Sternebra(e) malaligned, #3 through #5, slight Sternebra(e) malaligned, #3 and #4, slight Undescended thymic tissue, left				
2924	7s, 7v	11	F	6.5	v	Undescended thymic tissue, left				

s = skeletal examination, v = visceral examination, M=Male, F=Female, L=Late Resorption, g=grams

Hunting	gdon Life	Scier	nces			05-4287 211-DIPE-DEV	Page 139 Final Report
Fe	APPENDIX L						
AnimalFetusWeightAbnormalities (only fetuses with abnormalities are listed)NumberExamNumberSex(g)FateMajor abnormalities in CAPITALS							
Group	3 - 1000	о мо	G/M ³				
3901	5s, 5v	1	М	5.5	S	Sternebra(e) malaligned, #4, slight	
3903	7s, 6v	9	F	5.0	S	Sternebra(e) malaligned, #3 and #4, slight	
3905	8s, 7v	1	F	5.1	S	Sternebra(e) malaligned, #5, slight Rib(s) 14th rudimentary, right	
		5	F	4.8	S	Sternebra(e) malaligned, #5, slight	
3906	7s, 7v	1 9	M F	5.4 5.6	v v	Innominate artery absent Renal papilla (e) not fully developed (grade 1), left Ureter(s) distended left	
3907	6s, 5v	6 8	F F	5.3 5.5	S S	Sternebra(e) malaligned, #5, slight Hyoid body/arch(es), unossified body	
3910	7s, 7v	6 7	M F	6.0 5.7	S V	Rib(s) 14th rudimentary, right Innominate artery absent	

Hunting	Jdon Life	Scien	ces			05-4287 211-DIPE-DEV	Page 140 Final Report	
Fer	males		INDIVI	DUAL FE	TAL	EXTERNAL, VISCERAL AND SKELETAL OBSERVATIONS	APPENDIX L	
AnimalFetusWeightAbnormalities (only fetuses with abnormalities are listed)NumberExamNumberSex(g)FateMajor abnormalities in CAPITALS								
Group 3	- 1000	00 MG	/M ³					
3911	7s, 9v	8	F	3.7	V	MICROPHTHALMIA/ANOPHTHALMIA, left Undescended thymic tissue, right Left umbilical artery		
		11	F	3.3	V	DOMED CRANIUM, moderate; HYDROCEPHALY ANOPHTHALMIA, bilateral Hypoplastic lung lobe(s), apical lobe Hypoplastic thymus, bilateral lobes Hypoplastic spleen		
		13	F	5.5	S	Rib(s) 14th rudimentary, bilateral		
3912	6s, 6v	6 8 12	M M F	6.3 5.8 6.0	v v v	Undescended thymic tissue, bilateral Undescended thymic tissue, bilateral Undescended thymic tissue, right		
3913	4s, 4v	1 5	M M	7.0 6.2	S S	Rib(s) 14th rudimentary, right Sternebra(e) malaligned, #4, slight		
3914	7s, 7v	5 15	M M	5.0 5.9	V S	Undescended thymic tissue, left Rib(s) 14th rudimentary, left		
3916	7s, 7v	2 8	M M	5.5 5.7	S S	Sternebra(e) 5 and/or 6 unossified, #5 Sternebra(e) malaligned, #3 and #4, slight		

Huntingdo	on Life	Science	S			05-4287 211-DIPE-DEV	Page 141 Final Report				
Fema	Females INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL OBSERVATIONS										
AnimalFetusWeightAbnormalities (only fetuses with abnormalities are listed)NumberExamNumberSex(g)Fate Major abnormalities in CAPITALS											
Group 3 -	1000	0 MG/N	∕I ³								
3917 7	7s, 7v	11	F	4.8	S	Sternebra(e) 5 and/or 6 unossified, #5					
3918 6	6s, 7v	14	F	4.8	S	Sternebra(e) malaligned, #3 and #4, slight					
3921 6	6s, 5v	6 8	M F	6.2 6.0	S S	Sternebra(e) malaligned, #3 through #5, slight Sternebra(e) malaligned, #3 through #5, slight					
3922 8	3s, 9v	2 10	F F	6.0 5.8	S S	Sternebra(e) malaligned, #4 and #5 Sternebra(e) malaligned, #3 through #5, slight					
3923 8	3s, 8v	16	Μ	5.5	v	Renal papilla (e) not fully developed (grade 1), left					
3924 7	7s, 7v	4 6	M F	6.0 5.2	S S	Sternebra(e) malaligned, #4, slight Sternebra(e) 5 and/or 6 unossified, #5					

Huntingdon Lif	e Scienc	ces	Page 142 Final Report							
Females INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL OBSERVATIONS APPEN										
AnimalFetusWeightAbnormalities (only fetuses with abnormalities are listed)NumberExamNumberSex(g)FateMajor abnormalities in CAPITALS										
Group 4 - 20000 MG/M ³										
4901 7s, 6v	2 5 10	M F M	5.9 5.5 5.6	V S V	Undescended thymic tissue, left Hyoid body/arch(es) unossified body Undescended thymic tissue, bilateral					
4902 5s, 5v	7 5 11	F F	5.4 5.1	S S	7th cervical rib(s) present, right Rib(s) 14th rudimentary, bilateral Sternebra(e) 5 and/or 6 unossified, #5					
4904 9s, 9v	y 3	М	5.8	v	Undescended thymic tissue, left					
4905 8s, 8v	7 12 14 15	F M M	5.2 5.5 5.1	V V S	Undescended thymic tissue, left Undescended thymic tissue, left Sternebra(e) malaligned, #2 through #4, slight to modera	ite				
4906 8s, 8v	7 5 11	F F	5.1 5.0	v v	Undescended thymic tissue, right Undescended thymic tissue, left					
4907 5s, 5v		М	6.0	S	VERTEBRAL ANOMALY: THORACIC CENTRUM #13 AND LU #1 ABSENT; THORACIC ARCHES #13 AND LUMBAR ARCH #1 MALFORMED AND CLOSELY APPROXIMATED					
	11	Μ	5.9	V	Undescended thymic tissue, left					

Huntingdon Life S	ciences		05-4287 211-DIPE-DEV	Page 143 Final Report					
	•								
Females	APPENDIX L								
AnimalFetusWeightAbnormalities (only fetuses with abnormalities are listed)NumberExamNumberSex(g)FateMajor abnormalities in CAPITALS									
Group 4 - 20000 MG/M ³									
	4 F 6 M		Rib(s) 14th rudimentary, right EXOCCIPITAL AND CERVICAL ARCH #1 FUSED, right Sternebra(e) malaligned, #4 and #5, slight						
4910 6s, 7v	13 F	5.8 s	27 presacral vertebra(e) Rib(s) 14th rudimentary, bilateral						
	5 M 16 F	5.8 s 5.6 s	Rib(s) 14th rudimentary, right Rib(s) 14th rudimentary, left						
	2 M 8 F	6.7 s 5.8 s							
	3 F 8 F 15 F	5.3 s 5.1 s 5.0 v	Rib(s) 14th rudimentary, left						
4916 8s, 8v	13 F	4.2 v	Left umbilical artery						

Huntingdon Life S	Sciences	ciences 05-4287 211-DIPE-DEV									
Females	INDIV	APPENDIX L									
Animal I Number Exam N	Fetus umber Sex	Weight (g)		Abnormalities (only fetuses with abnormalities are listed) Major abnormalities in CAPITALS							
Group 4 - 20000 MG/M ³											
4917 7s, 7v	4 F 10 F 12 M 14 F	5.6 6.0 5.8 6.0	V S S S	Undescended thymic tissue, left 7th cervical rib(s) present, right Rib(s) 14th rudimentary, right Rib(s) 14th rudimentary, left							
4921 6s, 5v	1 M	5.4	S	7th cervical rib(s) present, right 25 presacral vertebra(e) Sternebra(e) 5 and/or 6 unossified, #5 Rib(s) 13th rudimentary, right							
	2 M 3 M	5.8 5.2	V S	Undescended thymic tissue, right							
	11 F	5.0	S	25 presacral vertebra(e) Rib(s) 13th rudimentary, bilateral Metatarsals, 1 unossified, bilateral							
4923 6s, 5v	4 M 12 M	5.9 5.8	V S	Undescended thymic tissue, left Rib(s) 14th rudimentary, left							

Page 145 Final Report	05-4287 211-DIPE-DEV	Huntingdon Life Sciences			Hunting	
APPENDIX L	EXTERNAL, VISCERAL AND SKELETAL OBSERVATIONS	JAL FETAL	INDIVIE		males	Fer
	Abnormalities (only fetuses with abnormalities are listed) te Major abnormalities in CAPITALS	/eight (g) Fate		Fetus Jumbe	Exam N	Animal Number
			∕M³	0 MG	- 2000	Group 4
	 Renal papilla (e) not fully developed (grade 1), bilateral Ureter(s) distended, left 	4.7 v	F	1	8s, 9v	4924
	Left umbilical artery	5.1 v	F	14		
	Rib(s) 14th rudimentary, left	5.8 s	F	17		

s = skeletal examination, v = visceral examination, M=Male, F=Female, g=grams

Appendix M

GASOLINE DIPE VAPOR CONDENSATE

EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

Statistical Analysis

Authors

Graham F Healey Simon Bate Gareth Thomas Statistics Department

Statistical analysis

COMPLIANCE STATEMENT

This phase of the study was conducted in compliance with the following Good Laboratory Practice standards and I consider the data generated to be valid.

The UK Good Laboratory Practice Regulations (Statutory Instrument 1999 No 3106 as amended by Statutory Instrument 2004 No. 994).

OECD Principles of Good Laboratory Practice (as revised in 1997), ENV/MC/CHEM(98)17.

EC Commission Directive 2004/10/EC of 11 February 2004 (Official Journal No L 50/44).

US EPA 79.60, CFR Vol. 59, No. 122, 27 June 1994.

These principles of Good Laboratory Practice are accepted by the regulatory authorities of the United States of America and Japan on the basis of intergovernmental agreements.

Principal Investigator

11th Odober 2012

Gareth D. Thomas, B.Sc. (Hons).

05-4287

Page 148

INTRODUCTION AND EXPERIMENTAL DESIGN

This rat study had a control and three groups treated at 2000 mg/m³, 10000 mg/m³ and 20000 mg/m³. There were up to 24 dams per group.

The following parameters were subjected to statistical analysis:

Continuous maternal parameters

Maternal body weight (d4, d5, d8, d11, d14, d17, d20, d21) Maternal body weight change (d4-d5, d5-d8, d8-d11, d11-d14, d14-d17, d17-d20, d5-d14, d14-d21, d5-d21) Maternal feed consumption (d4-d5, d5-d8, d8-d11, d11-d14, d14-d17, d17-d20, d20-d21, d5-d21) Maternal uterus weight (absolute and adjusted) Maternal net bodyweight change from d5 minus gravid uterine weight

Reproductive performance

Corpora lutea %Preimplantation loss Number of implant sites Fetuses alive Early resorptions Late resorptions Total resorptions %Total resorptions/implant sites Number of males Number of females

There were no dead fetuses, therefore the "Fetuses dead" and "%Fetuses dead/total" data were not analyzed.

Fetal body weight

Mean fetal body weight: males Mean fetal body weight: females Mean fetal body weight: litter (pooled males and females)

Discrete findings

Maternal pregnancy summary Maternal necropsy findings Fetal findings: external, visceral and skeletal (only certain visceral and skeletal findings required statistical analysis).

METHODOLOGY

Continuous maternal parameters

The analysis was performed at each timepoint separately.

Bartlett's test (Bartlett, 1937) was first applied (Proc GLM, SAS Institute 1999) to determine if the groups had equal variances. If the test was not significant at the 1% level, parametric procedures were used. If the test was significant then non-parametric procedures were used.

For the parametric choice, a one-way analysis of variance (Armitage, Berry and Matthews 2002) was initially applied (Proc GLM, SAS Institute 1999). If this was significant at the 5% level, then each treatment group was compared with the control using Dunnett's test (Dunnett 1955, 1964).

For the non-parametric choice, a Kruskal-Wallis test (Kruskal and Wallis 1952, 1953) was initially applied (Proc Npar1way, SAS Institute 1999). If this was significant at the 5% level, then each treatment group was compared with the control using Steel's test (Steel 1959).

Reproductive performance

All parameters except fetal bodyweight were analyzed using the same methods as for continuous maternal parameters, described above.

Fetal body weight

The fetal body weight was analyzed by separate and combined sexes using mixed models (Proc Mixed, SAS Institute 1999). The separate-sex analysis had dose group as explanatory variable, a random animal effect and litter size as covariate. The combined analysis had dose group and fetal sex and their interaction as explanatory variables, with litter size as covariate. For both sets of analysis, the Satterthwaite method was used for the fixed effects denominator degrees of freedom. If the dose group effect was significant at the 5% level, then each treatment group was compared with the control using Dunnett's test (Dunnett 1955, 1964), with the means being adjusted for litter size.

Discrete findings

Maternal pregnancy summary Maternal necropsy findings Fetal findings: external, visceral and skeletal malformations and variations

For maternal parameters:

These parameters were analyzed using non-parametric methods. If the dose group effect in was statistically significant, each dose group was compared with the control group using pairwise Wilcoxon rank sum tests (Wilcoxon 1945).

For fetal findings:

Only findings having an incidence of greater than one were included in the statistical analysis, since for less frequent parameters there was no chance of statistical significance.

These parameters were analyzed by generalized estimating equations (Proc Genmod, SAS Institute 1999) using a log link function and assuming Poisson distributed data. The litter was the basis for analysis where the correlation among littermates was modelled using a compound symmetric structure. Results are presented using the model based standard errors. If the dose group effect in the model was statistically significant, each dose group was compared with the control group using pairwise tests associated with least squares means, in this case being the mean incidence adjusted for litter size. For very low frequency findings this method did not converge. Therefore non-parametric methods, the Kruskal-Wallis test (Kruskal and Wallis 1952, 1953) were applied to the total number of affected foetuses in the litter instead. If this was significant at the 5% level then each treatment group was compared with the control using Wilcoxon rank sum tests (Wilcoxon 1945).

DATA HANDLING

Data were received as text files and Excel spreadsheets and re-formatted for software input. The software used for all the analyses was SAS 8.2 (SAS Institute 1999). For the analysis of uterine weight, adjusted bodyweight and the reanalysis of fetal findings conducted in this updated report, SAS 9.1.3 (SAS Institute 2002) and Quasar 1.1 (Quasar 1.1 2009) were used for the statistical analyses.

RESULTS

The data for animals 1915, 2919, 4908 and 4919 were excluded, where necessary, since the animals did not become pregnant. For maternal net bodyweight change from d5 minus gravid uterine weight, animals 1912 and 4924 were also excluded.

05-4287

For food consumption, the animal 2908 value for the d5-d8 period was an extreme statistical outlier, being about 11 standard deviations higher than the mean. This value was excluded from the analysis.

Continuous maternal parameters

Summary statistics are presented in Tables 1 to 4 respectively. Bartlett's test was not significant for any parameter at any timepoint. The results can be summarised as follows:

Bodyweight

No significant differences at any timepoint.

Bodyweight change

d5-d8 significant difference at 20000 mg/m³ (p<0.01). d8-d11 significant difference at 2000 mg/m³ (p<0.05) and 10000 mg/m³ (p<0.01). d11-d14 significant difference at 2000 mg/m³ (p<0.05) and 20000 mg/m³ (p<0.01). d5-d14 significant difference at 2000 mg/m³ (p<0.05), 10000 mg/m³ (p<0.01) and 20000 mg/m³ (p<0.01).

Maternal net bodyweight change from d5 minus gravid uterine weight Significant difference at 20000 mg/m³ (p<0.001).

Maternal feed consumption

d8-d11 significant difference at 10000 mg/m³ (p<0.05) and 20000 mg/m³ (p<0.01). d11-d14 significant difference at 20000 mg/m³ (p<0.01). d20-d21 significant difference at 2000 mg/m³ (p<0.05), 10000 mg/m³ (p<0.05) and 20000 mg/m³ (p<0.01). d5-d21 significant difference at 20000 mg/m³ (p<0.01).

All changes were reductions from the Control.

Maternal uterus weight and maternal bodyweight minus gravid uterine weight Maternal uterus weight: no significant differences. Maternal bodyweight minus gravid uterine weight: no significant differences.

Reproductive performance

Summary statistics are presented in Table 5. Bartlett's test was significant for several parameters. The subsequent analysis was thus either parametric (P) or non-parametric (NP). The methods and results can be summarised as follows:

Corpora lutea	Р	No significant differences.
%Preimplantation loss	NP	No significant differences.
Number of implant sites	Р	No significant differences.
Fetuses alive	Р	No significant differences.
Early resorptions	NP	No significant differences.
Late resorptions	Р	No significant differences.
Total resorptions	NP	No significant differences.
%Total resorptions/implant sites	NP	No significant differences.
Number of males	Р	No significant differences.
Number of females	Р	No significant differences.

Fetal bodyweight

Summary statistics, for means adjusted for litter size, are presented in Table 6.

For the pooled sex (litter) analysis there was a strong sex difference and evidence for a difference between treatment groups (p=0.0487). The subsequent Dunnett's test was significant at the high dose (p=0.016, a reduction from control).

For males, there was a tendency for reduced mean bodyweight at higher doses, but the overall comparison did not attain statistical significance.

For females, there was a significant difference between groups (p=0.016). The subsequent Dunnett's test was significant at the high dose (p=0.007, a reduction from control).

There was a strong effect of litter size in all three analyses.

These results can be summarised as follows:

Male fetal body weight	No significant differences.
Female fetal body weight	Significant decrease at 20000 mg/m ³ (p =0.007).
Litter body weight	Significant decrease at 20000 mg/m ³ (p =0.016).

Discrete findings

For the Maternal pregnancy summary, only one parameter, the number of non-pregnant females, required analysis. This is summarised in Table 7.

The incidence of fetal findings, for those findings with a total incidence of greater than one is summarised in Table 8. Only five Visceral and seven Skeletal findings, all of them variations, required statistical analysis. The analysis was either generalised linear modelling (GL) or non-parametric (NP).

NP

No significant differences

The results can be summarised as follows:

Maternal parameters

Non-pregnant females

Visceral findings

Heart, V Innominate artery absent	NP	No significant differences
Torso, V Left umbilical artery	GL	No significant differences
Torso, V Renal papilla (E) not fully developed	NP	No significant differences
Torso, V Undescended thymus	GL	No significant differences
Torso, V Ureter(s) distended	NP	No significant differences

Skeletal findings

Cervical vertebrae, V 7th cervical rib(s) present Ribs, V Rib(s) 13 th Rudimentary Ribs, V Rib(s) 14 th Rudimentary Sacral vertebrae, V 25 Presacral vertebra(e) Skull, V Hyoid body/arch(es) unossified Sternebrae, V Sternebra(e) 5 and/or 6 unossified.	NP NP GL NP NP	No significant differences No significant differences No significant differences No significant differences No significant differences No significant differences
Sternebrae, V Sternebra(e) 5 and/or 6 unossified. Sternebrae, V Sternebra(e) malaligned	NP GL	No significant differences Significant decrease from control
Sterneorde, V Sterneord(e) malanghed	0L	at 20000 mg/m ³ (p =0.047).

[†] There was some evidence of a statistically significant increase from control at 20000 mg/m³ (p=0.067).

REFERENCES

ARMITAGE, P., BERRY, G. and MATTHEWS, J.N.S. (2002) *Statistical Methods in Medical Research*, 4th edition. Blackwell Science, Oxford, UK, pp208-215.

BARTLETT, M.S. (1937) Properties of sufficiency and statistical tests. *Proceedings of the Royal Society, Series A*, 160: 268-282.

DUNNETT, C.W. (1955) A multiple comparison procedure for comparing several treatments with a control. *Journal of the American Statistical Association* 50: 1096-1121.

DUNNETT, C.W. (1964) New tables for multiple comparisons with a control. *Biometrics* 20: 482-491.

KRUSKAL, W.H. and WALLIS, W.A. (1952) Use of Ranks in one-criterion variance analysis. *Journal of the American Statistical Association* 47: 583-621.

KRUSKAL, W.H. and WALLIS, W.A. (1953) Errata for Kruskal-Wallis (1952) *Journal of the American Statistical Association* 48: 907-911.

QUASAR 1.1 User Guide (Stand-Alone) version 1.1 (2009). Huntingdon Life Sciences Internal Document.

SAS INSTITUTE (1999) SAS OnlineDoc® Version Eight. SAS Institute Inc., Cary, NC, USA

SAS INSTITUTE (2002) SAS OnlineDoc® Version Nine. SAS Institute Inc., Cary, NC, USA.

STEEL, R.G.D. (1959) A multiple comparison rank sum test: treatment versus control. *Biometrics* 15, 560-572.

WILCOXON, F. (1945) Individual comparisons by ranking methods. *Biometrics Bulletin*, **1**, 80-83.

05-4287

TABLE 1

Maternal body weight (g)

	0 mg/m^3	2000 mg/m^3	10000 mg/m^3	20000 mg/m^3
Day of gestation	(n=23) mean (sd)	(n=23) mean (sd)	(n=24) mean (sd)	(n=22) mean (sd)
4	233.8 (14.1)	234.7 (16.6)	233.9 (15.7)	235.4 (14.7)
5	244.0 (14.6)	245.3 (16.6)	243.9 (13.9)	245.0 (15.3)
8	259.3 (12.8)	260.4 (18.1)	256.6 (14.4)	255.6 (16.2)
11	281.5 (14.9)	279.0 (19.7)	274.4 (15.6)	275.4 (19.6)
14	301.5 (17.1)	295.5 (20.2)	292.0 (14.8)	290.2 (19.6)
17	332.1 (22.3)	326.7 (24.2)	322.8 (18.7)	321.1 (24.9)
20	378.1 (26.3)	370.3 (29.9)	366.8 (24.1)	365.5 (27.1)
21	387.8 (28.5)	379.4 (32.7)	375.7 (26.0)	373.6 (27.4)

Analysis performed = Parametric throughout. No significant differences found for any parameter. n = number of litters, sd = standard deviation

05-4287

TABLE 2

Maternal body weight change (g)

Days of	0 mg/m^3	2000 mg/m^3	10000 mg/m^3	20000 mg/m ³
gestation	(n=23)	(n=23)	(n=24)	(n=22)
Period	mean (sd)	mean (sd)	mean (sd)	mean (sd)
4-5	10.3 (6.1)	10.7 (4.7)	10.2 (5.3)	9.6 (3.2)
5-8	15.5 (4.4)	15.0 (4.8)	12.5 (5.4)	10.6 (4.7) **
8-11	22.2 (4.7)	18.6 (3.7) *	17.9 (4.0) **	19.7 (5.6)
11-14	20.0 (4.2)	16.8 (5.1) *	17.5 (3.8)	15.0 (4.0) **
14-17	30.7 (7.3)	31.2 (6.9)	31.0 (7.5)	31.0 (6.7)
17-20	46.2 (7.5)	43.5 (8.9)	44.1 (9.8)	44.5 (7.7)
5-14	57.6 (8.4)	50.2 (7.9) *	47.8 (7.6) **	45.2 (9.4) **
14-21	86.4 (15.3)	84.0 (16.2)	83.8 (17.0)	83.5 (10.1)
5-21	143.9 (20.6)	134.2 (21.5)	131.8 (20.9)	128.6 (16.0)

Analysis performed = Parametric throughout.

* = p < 0.05, ** = p < 0.01n = number of litters, sd = standard deviation

Maternal net bodyweight change from d5 minus gravid uterine weight (g)

	0 mg/m^3 (n=22)	2000 mg/m^3 (n=23)	10000 mg/m^3 (n=24)	20000 mg/m ³ (n=20)
Parameter	mean (sd)	mean (sd)	mean (sd)	mean (sd)
Absolute	42.95 (11.08)	37.39 (9.16)	35.71 (11.75)	29.35 (10.65) ***

Analysis performed = Parametric throughout. n = number of litters, sd = standard deviation *** = p < 0.001

05-4287

TABLE 3

Maternal feed consumption (g/kg/day)

Days of	0 mg/m^3	2000 mg/m^3	10000 mg/m^3	20000 mg/m^3
gestation	(n=22-23)	(n=22-23)	(n=22-24)	(n=21-22)
Period	mean (sd)	mean (sd)	mean (sd)	mean (sd)
4-5	71.2 (10.5)	74.2 (11.5)	75.0 (11.4)	73.1 (10.3)
5-8	80.8 (5.9)	82.7 (5.5)	79.7 (5.9)	78.8 (5.9)
0.11				
8-11	85.1 (7.1)	81.8 (4.6)	80.3 (5.5) *	77.4 (5.7) **
11 14	95.0(7.1)	01 ((1)	92 4 (2.0)	77.9 (2.0) **
11-14	85.0 (7.1)	81.6 (4.6)	82.4 (3.9)	77.8 (3.9) **
14-17	80.9 (4.5)	80.8 (4.5)	80.6 (6.0)	79.2 (4.4)
14-17	00.7 (4.5)	00.0 (4.5)	00.0 (0.0)	77.2 (4.4)
17-20	74.5 (4.5)	73.4 (3.3)	73.6 (3.8)	73.1 (4.3)
		()		
20-21	53.3 (8.1)	46.8 (7.6) *	47.0 (5.8) *	45.9 (7.8) **
5-21	76.2 (4.8)	75.0 (4.1)	73.6 (3.5)	71.5 (3.9) **

Analysis performed = Parametric throughout. * = p < 0.05, ** = p < 0.01n = number of litters, sd = standard deviation Some variation in group size due to missing values.

TABLE 4

Maternal uterus weights and maternal bodyweight minus gravid uterine weight (g)

	0 mg/m^3 (n=22)	2000 mg/m^3 (n=23)	10000 mg/m^3 (n=24)	20000 mg/m ³ (n=20)
Parameter	mean (sd)	mean (sd)	mean (sd)	mean (sd)
Absolute Adjusted ^A	101.3 (19.3) 286.0 (18.1)	96.5 (19.9) 282.7 (19.0)	96.1 (22.5) 279.5 (17.2)	96.4 (15.6) 275.3 (18.4)

Analysis performed = Parametric throughout.

A = Maternal bodyweight minus gravid uterine weight

No significant differences found for any parameter.

n = number of litters, sd = standard deviation

05-4287

TABLE 5

Reproductive performance

	0 mg/m^3 (n=23)	2000 mg/m^3 (n=23)	10000 mg/m^3 (n=24)	20000 mg/m^3 (n=22)
Parameter	mean (sd)	mean (sd)	mean (sd)	mean (sd)
corpora lutea (1)	14.9 (2.8)	14.5 (2.1)	14.8 (2.5)	15.2 (2.6)
%preimplantation loss (2)	9.3 (13.5)	6.6 (8.0)	10.4 (18.6)	7.6 (9.1)
number of implant sites (1)	13.5 (2.7)	13.5 (1.5)	13.1 (2.8)	14.0 (2.4)
fetuses alive (1)	13.0 (2.6)	12.4 (2.6)	12.6 (3.1)	13.3 (2.6)
early resorptions (2)	0.4 (0.7)	1.0 (2.1)	0.5 (0.8)	0.7 (0.6)
late resorptions (1)	0.0 (0.2)	0.0 (0.2)	0.0 (0.0)	0.0 (0.0)
total resorptions (2)	0.5 (0.7)	1.0 (2.1)	0.5 (0.8)	0.7 (0.6)
%total resorp./implant sites (2)	3.4 (4.7)	7.9 (14.9)	5.1 (8.6)	5.2 (5.2)
number of males (1)	6.3 (1.7)	5.8 (2.2)	6.4 (2.3)	6.1 (2.1)
number of females (1)	6.7 (2.0)	6.7 (2.3)	6.2 (2.3)	7.1 (2.5)

Analysis performed = (1) Parametric or (2) Non-parametric No significant differences found for any parameter. n = number of litters, sd = standard deviation

Male and female bw n=11

05-4287

TABLE 6

Mean (adjusted) fetal bodyweight (g)

	0 mg/m^3 (n=23)	2000 mg/m^3 (n=23)	10000 mg/m^3 (n=24)	20000 mg/m^3 (n=22)
	mean (se)	mean (se)	mean (se)	mean (se)
male female litter	5.88 (0.06) 5.58 (0.06) 5.73 (0.06)	5.87 (0.06) 5.59 (0.06) 5.73 (0.06)	5.78 (0.06) 5.47 (0.06) 5.62 (0.06)	5.71 (0.06) 5.36 (0.06) ** 5.54 (0.06) *

* = p < 0.05, ** = p < 0.01, *** = p < 0.001p values vs control using Dunnett's test following mixed model ANOVA significant at 5%. n = number of litters, se =standard error of the adjusted mean

TABLE 7

Maternal pregnancy summary and necropsy findings

Parameter	Finding	0 mg/m^3 (n=24)	2000 mg/m ³ (n=24)	10000 mg/m ³ (n=24)	20000 mg/m ³ (n=24)
Pregnancy	Non-pregnant	1	1	0	2

Only findings where the total incidence was greater than one are included.

Analysis performed = Generalized linear modelling or Non-parametric tests (see text). No significant differences found for any parameter.

n = number of litters

05-4287

TABLE 8

Fetal findings: Visceral

Tissue	Organ	Finding	0 mg/m^3 (n=23)	2000 mg/m^3 (n=23)	10000 mg/m^3 (n=24)	20000 mg/m^3 (n=22)
			(11-23)	(11-23)	(11-2-7)	(11-22)
Visceral	HEART	V INNOMINATE ARTERY ABSENT	1	0	2	1
	TORSO	V LEFT UMBILICAL ARTERY	1	4	1	2
	TORSO	V RENAL PAPILLA (E) NOT FULLY DEVELOPED	1	0	2	1
	TORSO	V UNDESCENDED THYMUS	10	11	5	11
	TORSO	V URETER(S) DISTENDED	1	0	1	1

Only findings where the total incidence was greater than one are included.

Analysis performed = Generalized linear modelling or Non-parametric tests (see text).

No significant differences found for any parameter.

n = number of litters

05-4287

TABLE 8 (cont'd)

Fetal findings: Skeletal

Tissue	Organ	Finding	0 mg/m^3	2000 mg/m^3	10000 mg/m^3	20000 mg/m ³
	C	C C	(n=23)	(n=23)	(n=24)	(n=22)
Skeletal	CERVICAL VERT	V 7TH CERVICAL RIB(S) PRESENT	0	1	0	3
	RIBS	V RIB(S) 13 th RUDIMENTARY	1	0	0	3
	RIBS	V RIB(S) 14 th RUDIMENTARY	2	7	5	12
	SACRAL VERT	V 25 PRESACRAL VERTEBRA(E)	1	0	0	3
	SKULL	V HYOID BODY/ARCH(ES) UNOSSIFIED BODY	1	0	1	1
	STERNEBRAE	V STERNEBRA(E) 5 AND/OR 6 UNOSSIFIED	1	0	3	3
	STERNEBRAE	V STERNEBRA(E) MALALIGNED	11	11	13	3*

Only findings where the total incidence was greater than one are included. Analysis performed = Generalized linear modelling or Non-parametric tests (see text). * = p < 0.05

n = number of litters

Huntingdon Life Sciences	05-4287	Page 164
	211-DIPE-DEV	Final Report

lix N
2

Table of Contents

Feed Certificates of Analysis	
Water Certificates of Analysis	
Bedding Certificates of Analysis	

Page 1 of 2

Certified Papers Retrieval

Product Code: Product Desc: Lab Number: Lot Code: Entered: 5002M CERTIFIED RODENT DIET MEAL L0516825-2 MAY 12 05 1B 5/31/2005

Assay	Assay			Analysis			
PROTEIN			0.8 %				
FAT ACID (HYDRO.)				6	.34 %		
FIBER (CRUDE)				3	.64 %		
ARSENIC			LESS	THAN	0.2 PPM		
CADMIUM			LESS T	HAN 0	.05 PPM		
CALCIUM				0.9	943 %		
LEAD				0.1	170 PPM		
MERCURY			LESS TH	IAN 0.0	025 PPM		
PHOSPHORUS				0.6	598 %		
SELENIUM				0.2	214 PPM		
ORGANOPHOSPHA	TES	PPM	ORGANOPHOSPH	ATES	PPM		
III 11271000 II		LESS THAN 0.02	Disulfoton	LESS THAN 0.02			
Ethion		LESS THAN 0.02	Malathion	LESS THAN 0.02			
Methyl Parathion		LESS THAN 0.02			LESS THAN 0.02		
Thimet		LESS THAN 0.02	Thiodan	LESS THAN 0.02			
Trithion		LESS THAN 0.02					
				<u></u>			
PESTICIDES AND PCB	PPN	Λ	PESTICIDES AND PCB	PPN	Λ		
Aldrin	LES	S THAN 0.02	Alpha-BHC	LES	S THAN 0.02		
Beta-BHC	LES	S THAN 0.02	Chlordane	LES	S THAN 0.02		
DDE	LES	S THAN 0.02	DDT	DDT LESS			
Delta-BHC	LES	S THAN 0.02	Dieldrin	Dieldrin LES			
Endrin	LES	S THAN 0.02	НСВ	LES	LESS THAN 0.02		
Heptachlor	LES	S THAN 0.02	Heptachlor Epoxide	eptachlor Epoxide LESS			

 Heptachlor
 LESS THAN 0.02
 Heptachlor Epoxide
 LESS THAN 0.02

 Lindane
 LESS THAN 0.02
 Methoxychlor
 LESS THAN 0.02

 Mirex
 LESS THAN 0.02
 PCB
 LESS THAN 0.15

 AFLATOXINS
 Aflatoxins
 LESS THAN 5 PPB

http://www.labdiet.com/certified/pwa_spc002.asp

12/8/2005

Page 1 of 2

Certified Papers Retrieval

Product Code: Product Desc: Lab Number: Lot Code: Entered: 5002M CERTIFIED RODENT DIET MEAL L0517995-2 JUN 07 05 3B 6/24/2005

Assay	Analysis Units						
PROTEIN			21 %				
FAT ACID (HYDRO.)				5.62			
FIBER (CRUDE)				4	.01	%	
ARSENIC			LESS T	HAN	0.2	PPM	
CADMIUM				0.08	382	PPM	
CALCIUM				1	.03	%	
LEAD			· · ·	0.2	213	PPM	
MERCURY			LESS THA	N 0.0)25	PPM	
PHOSPHORUS				0.7	744	%	
SELENIUM				0.3	316	PPM	
ORGANOPHOSPHA	TES	PPM	ORGANOPHOSPHA	TES	PPI	M	
Diazinon			Disulfoton		LE\$ 0.0	SS THAN 2	
Ethion	Ethion		Malathion	0.0		.03	
Methyl Parathion		LESS THAN 0.02	Parathion		LESS THAN 0.02		
Thimet		LESS THAN 0.02	Thiodan		LES 0.0	SS THAN 2	
Trithion		LESS THAN 0.02					
PESTICIDES AND PCB	PPN	Λ	PESTICIDES AND PCB	PPN	N		
Aldrin	LES	S THAN 0.02	Alpha-BHC	LES	ST	HAN 0.02	
Beta-BHC	LES	S THAN 0.02	Chlordane	LES	S T	HAN 0.02	
DDE	LES	S THAN 0.02	DDT	LES	S T	HAN 0.02	
Delta-BHC	LES	S THAN 0.02	Dieldrin	LES	ST	HAN 0.02	
Endrin	LES	S THAN 0.02	НСВ	LES	ST	HAN 0.02	
Heptachlor	LES	S THAN 0.02	Heptachlor Epoxide	LES	ST	HAN 0.02	
Lindane	LES	S THAN 0.02	Methoxychlor	Methoxychlor LES		HAN 0.02	
Mirex	LES	S THAN 0.02	РСВ	LES	S T	HAN 0.15	

http://www.labdiet.com/certified/pwa_spc002.asp

Page 1 of 2

Certified Papers Retrieval

Product Code: Product Desc: Lab Number: Lot Code: Entered: 5002M CERTIFIED RODENT DIET MEAL L0517995-3 JUN 07 05 3C 6/24/2005

				_	Units	
			20	0.9	%	
FAT ACID (HYDRO.)				87	%	
			3.	75	%	
		LESS T	HAN (0.2	PPM	
			0.09	33	PPM	
			1.	01	%	
			0.2	09	PPM	
		LESS THA	N 0.0	25	PPM	
		· · ·				
ATES	PPM	ORGANOPHOSPHA	TES	PP	M	
Diazinon		Disulfoton			SS THAN	
Ethion		Malathion		LESS THAN 0.02		
Methyl Parathion		Parathion		LESS THAN 0.02		
	LESS THAN 0.02				LESS THAN 0.02	
	LESS THAN 0.02					
PPN	n	PESTICIDES AND PCB	PPM	1		
LES	S THAN 0.02	Alpha-BHC	LES	SТ	HAN 0.02	
LES	S THAN 0.02	Chlordane	LES	S T	HAN 0.02	
LES	S THAN 0.02	DDT	LES	ST	HAN 0.02	
LES	S THAN 0.02	Dieldrin	LES	ST	HAN 0.02	
LES	S THAN 0.02	НСВ	LES	SТ	HAN 0.02	
LES	S THAN 0.02	Heptachlor Epoxide	LES	S T	HAN 0.02	
LES	S THAN 0.02	Methoxychlor	LES	SТ	HAN 0.02	
LES	S THAN 0.02	РСВ	LES	SТ	HAN 0.15	
	Aflatoxins	LESS THAN 5 PI	эΒ			
	ATES LES LES LES LES	ATES PPM LESS THAN 0.02 LESS THAN 0.02 LESS THAN 0.02 LESS THAN 0.02 LESS THAN 0.02 LESS THAN	Image: Second system Image: Second system Image: Second	Image: Second state of the system of the	3.75 LESS THAN 0.2 0.0933 1.01 0.209 LESS THAN 0.25 0.209 LESS THAN 0.025 0.723 0.309 ATES PPM ORGANOPHOSPHATES 0.2 0.309 ATES THAN 0.02 Disulfoton LESS THAN 0.02 Malathion 0.02 LESS THAN 0.02 LESS THAN 0.02 Disulfoton LESS THAN 0.02 LESS THAN 0.02 LESS THAN 0.02 LESS THAN 0.02 Deltarion LESS THAN 0.02 PPM PESTICIDES AND PPM LESS THAN 0.02 Alpha-BHC LESS T LESS THAN 0.02 Dieldrin LESS THAN 0.02 Dieldrin <	

BENCHMARK ANALYTICS 4777 SAUCON CREEK ROAD CENTER VALLEY, PA 18034-9004

PHONE (610) 974-8100 FAX (610) 974-8104

SEND DATA TO:					INV #:	383492-3	83404	
	~				ΠΝΥ <i>π</i> .			
NAME:	Terry Kuszni					383496-3	53498	
COMPANY:	Huntingdon L				DAOF	4.05.0		
ADDRESS:), Mettlers Road e. NJ 08875-23	60		PAGE:	1 OF 6		
	East Williston	e, NJ 00075-25	00		PO #:			
PHONE:	(732) 873-25	50 x2100			10 #.			
FAX:	(732) 873-39		TEST REPORT		PWS ID#:			

PROJECT NAME:	ANIMAL DRI	NKING WATER		GRAB S	AMPLES:		383492-38	3494
SAMPLED BY:	CARA KEIPE						383496-38	3498
LOCATION:	SEE BELOW	1			SITE SAM		NONE	
DATE:	07/13/05				ECEIVED I		07/14/05	
TIME:	SEE BELOW	/			CEIVED B		0819	
				RECEIV	ED FOR L	AB BY:	R. SMOLE	NAK
SAMPLE:	SITE #1 E-M	VING ROOM 54	6		TIME:	1608		
Orimi LE.			0		START	START	END	
TEST	RESULT	UNITS	METHOD	INV#	DATE	TIME	DATE	INIT.
POSUDOMONAS *	<1	PER 100 ML	SM#19 9215 D	383492	07/14/05	1505	07/15/05	JD
pseudomoras TAngel		FER TOO MIL	SIVI# 19 92 15 D	303492	0//14/05	1303	07/15/05	JD
STANDARD PLATE	<1	CFU/ML	SM#20 9215 B	383494	07/14/05	1105	07/16/05	JD
COUNT		OI OMIL	011#20 0210 0	000404	0//14/00	1105	0//10/05	30
TOTAL COLIFORM	0	PER 100 ML	EPA 600-R-00-013	383493	07/14/05	1308	07/15/05	MJG
E. COLI	0	PER 100 ML	EPA 600-R-00-013	383493	07/14/05	1308	07/15/05	MJG
SAMPLE:	SITE #2, V-1	ROOM 725			TIME:	1600		
					START	START	END	
TEST	RESULT	UNITS	METHOD	INV#	DATE	TIME	DATE	INIT.
PSEUDOMONAS *	<1	PER 100 ML	SM#19 9215 D	383496	07/14/05	1505	07/15/05	JD

COUNT TOTAL COLIFORM PER 100 ML EPA 600-R-00-013 383497 07/14/05 07/15/05 MJG 0 1308 E. COLI PER 100 ML EPA 600-R-00-013 383497 07/14/05 0 1308 07/15/05 MJG

SM#20 9215 B

REMARKS:

STANDARD PLATE

THE ABOVE TEST RESULTS MEET ALL THE REQUIREMENTS OF NELAC. S PARAMETER IS NOT CURRENTLY UNDER THE NELAC CERTIFICATION PROGRAM.

<1

Atephanic Oluca DATE: July 25, m

07/16/05 JD

MANAGER:

CFU/ML

383498 07/14/05 1105

BENCHMARK ANALYTICS 4777 SAUCON CREEK ROAD CENTER VALLEY, PA 18034-9004

PHONE (610) 974-8100 FAX (610) 974-8104

SEND DATA TO: NAME: COMPANY: ADDRESS:	Terry Kusznir Huntingdon Life PO Box 2360, M East Millstone, N	lettlers Road	0		INV #: PAGE:	383495 383499, 5 2 OF 6	03	
PHONE: FAX:	(732) 873-2550 (732) 873-3992	x 2100	TEST REPORT		PO #: PWS ID#:			
PROJECT NAME:	ANIMAL DRINK	ING WATER		GRAB SAMF	LES:		383495	
SAMPLED BY:	CARA KEIPER						383499, 5	03
LOCATION:	SEE BELOW			COMPOSITE	SAMPLES	S:	NONE	
DATE:	07/13/05			DATE RECE	IVED BY L	AB:	07/14/05	
TIME:	SEE BELOW			TIME RECEI	VED BY LA	B:	0819	
				RECEIVED F	OR LAB B	Y:	R. SMOLE	NAK
SAMPLE:	SITE #1, F-WIN	G ROOM 546			TIME:	1608		
					START	START	END	
TEST	RESULT	UNITS	METHOD	INV #	DATE	TIME	DATE	INIT.
COPPER	0.0660	MG/L	EPA 200.8	383495	07/15/05	0735	07/15/05	KP
IFAD Jest provi	0.0017	MG/L	EPA 200.8	383495	07/15/05	0735	07/15/05	KP
SAMPLE:	SITE #2, V-1 R0	OOM 725			TIME:	1600		
				1	START	START	END	
TEST	RESULT	UNITS	METHOD	INV#	DATE	TIME	DATE	INIT.
COPPER	0.0177	MG/L	EPA 200.8	383499	07/15/05	0735	07/15/05	KP
LEAD	<0.0005	MG/L	EPA 200.8	383499	07/15/05	0735	07/15/05	KP

SAMPLE:	SITE #3, V-2 ROOM 910				TIME:	1625		
					START	START	END	
TEST	RESULT	UNITS	METHOD	INV #	DATE	TIME	DATE	INIT.
COPPER	0.0548	MG/L	EPA 200.8	383503	07/15/05	0735	07/15/05	KP
LEAD	0.0007	MG/L	EPA 200.8	383503	07/15/05	0735	07/15/05	KP

REMARKS:

REVIEWED

THE ABOVE TEST RESULTS MEET ALL THE REQUIREMENTS OF NELAC ANDRELATE ONLY TO THESE SAMPLES.

MANAGER: ____

Atiphanie Quya DATE: July 25, m

BENCHMARK ANALYTICS 4777 SAUCON CREEK ROAD CENTER VALLEY, PA 18034-9004

PHONE (610) 974-8100 FAX (610) 974-8104

SEND DATA TO: NAME:	Terry Kusznir		INV #:	383500-3 383504-3		
COMPANY: ADDRESS:	Huntingdon Life Sciences PO Box 2360, Mettlers Road East Millstone, NJ 08875-236	0	PAGE:	3 OF 6		
		-	PO #:			
PHONE: FAX:	(732) 873-2550 x2100 (732) 873-3992	TEST REPORT	PWS ID#	:		
PROJECT NAME: SAMPLED BY:	ANIMAL DRINKING WATER CARA KEIPER	· · · · · · · · · · · · · · · · · · ·	GRAB SAMPLES:		383500-383 383504-383	
LOCATION:	SEE BELOW		COMPOSITE SAM		NONE	
DATE				FLEO.	NONE	
DATE:	07/13/05		DATE RECEIVED		NONE 07/14/05	
TIME:	07/13/05 SEE BELOW			BY LAB:		
			DATE RECEIVED	BY LAB: BY LAB:	07/14/05	AK
			DATE RECEIVED TIME RECEIVED E	BY LAB: BY LAB:	07/14/05 0819	AK
			DATE RECEIVED TIME RECEIVED E	BY LAB: BY LAB:	07/14/05 0819	AK

					START	START	END	
TEST	RESULT	UNITS	METHOD	INV #	DATE	TIME	DATE	INIT.
PSEUDOMONAS *	<1	PER 100 ML	SM#19 9215 D	383500	07/14/05	1505	07/15/05	JD
STÂNDARD PLATE COUNT	9	CFU/ML	SM#20 9215 B	383502	07/14/05	1105	07/16/05	JD
TOTAL COLIFORM E. COLI	0 0	PER 100 ML PER 100 ML	EPA 600-R-00-013 EPA 600-R-00-013	383501 383501	07/14/05 07/14/05	1308 1308	07/15/05 07/15/05	MJG MJG

SAMPLE:	SITE #4, V-3	ROOM 950			TIME:	1556		
					START	START	END	
TEST	RESULT	UNITS	METHOD	INV #	DATE	TIME	DATE	INIT.
PSEUDOMONAS *	<1	PER 100 ML	SM#19 9215 D	383504	07/14/05	1505	07/15/05	JD
STANDARD PLATE COUNT	4	CFU/ML	SM#20 9215 B	383506	07/14/05	1105	07/16/05	JD
TOTAL COLIFORM E. COLI	0 0	PER 100 ML PER 100 ML	EPA 600-R-00-013 EPA 600-R-00-013	383505 383505		1308 1308	07/15/05 07/15/05	MJG MJG

REMARKS:

THE ABOVE TEST RESULTS MEET ALL THE REQUIREMENTS OF NELAC. IS PARAMETER IS NOT CURRENTLY UNDER THE NELAC CERTIFICATION PROGRAM.

REVIEWED

MANAGER:

Stephani Olija DATE: July 25, 200-

BENCHMARK ANALYTICS 4777 SAUCON CREEK ROAD CENTER VALLEY, PA 18034-9004

PHONE (610) 974-8100 FAX (610) 974-8104

SEND DATA TO: NAME: COMPANY: ADDRESS:	Terry Kusznir Huntingdon Life PO Box 2360, M	lettlers Road			INV #:	383507-3 383515	83511	
	East Millstone, N	NJ 08875-236	0		PAGE:	4 OF 6		
PHONE: FAX:	(732) 873-2550 (732) 873-3992	x 2100	TEST REPORT		PO #: PWS ID#:			
PROJECT NAME:	ANIMAL DRINK	ING WATER	•	GRAB SAMF	LES:		383507-38	33511
SAMPLED BY:	CARA KEIPER						383515	
LOCATION:	SEE BELOW			COMPOSITE	E SAMPLES	S:	NONE	
DATE:	07/13/05			DATE RECE	IVED BY L	AB:	07/14/05	
TIME:	SEE BELOW			TIME RECEI	VED BY LA	NB:	0819	
				RECEIVED F	FOR LAB B	Y:	C. PASSO	W
SAMPLE:	SITE #4, V-3 RC	DOM 950			TIME:	1556		
					START	START	END	
TEST	RESULT	UNITS	METHOD	INV #	DATE	TIME	DATE	INIT.
COPPER	0.0191	MG/L	EPA 200.7	383507	07/15/05	0735	07/15/05	KP
LEAD	<0.0005	MG/L	EPA 200.9	383507	07/15/05	0735	07/15/05	KP
· `)								
SAMPLE:	SITE #5, INHAL	ATION ROOM	1 812	· · · · · · · · · · · · · · · · · · ·	TIME:	1618		
					START	START	END	
TEST	RESULT	UNITS	METHOD	INV#	DATE	TIME	DATE	INIT.
COPPER	0.0203	MG/L	EPA 200.7	383511	07/15/05	0735	07/15/05	KP
EAD	0.0006	MG/L	EPA 200.9	383511	07/15/05	0735	07/15/05	KP

SAMPLE:	L-WING ROOM	458			TIME:	1617		
					START	START	END	
EST	RESULT	UNITS	METHOD	INV #	DATE	TIME	DATE	INIT.
OPPER	0.0166	MG/L	EPA 200.7	383515	07/15/05	0735	07/15/05	KP
EAD	<0.0005	MG/L	EPA 200.9	383515	07/15/05	0735	07/15/05	KP

EMARKS:

)

HE ABOVE TEST RESULTS MEET ALL THE REQUIREMENTS OF NELAC AND RELATE ONLY TO THESE SAMPLES.

Stephani Qluc DATE: July 25, M ANAGER:

BENCHMARK ANALYTICS 4777 SAUCON CREEK ROAD CENTER VALLEY, PA 18034-9004

PHONE (610) 974-8100 FAX (610) 974-8104

SEND DATA TO: NAME:	Terry Kusznir		INV #:	383508-3 383512-3	
COMPANY: ADDRESS:	Huntingdon Life Sciences PO Box 2360, Mettlers Road East Millstone, NJ 08875-236	60	PAGE:	5 OF 6	
			PO #:		
PHONE: FAX:	(732) 873-2550 x2100 (732) 873-3992	TEST REPORT	PWS ID#	ŧ:	
PROJECT NAME: SAMPLED BY: LOCATION: DATE: TIME:	ANIMAL DRINKING WATER CARA KEIPER SEE BELOW 07/13/05 SEE BELOW		GRAB SAMPLES: COMPOSITE SAM DATE RECEIVED TIME RECEIVED RECEIVED FOR I	IPLES: BY LAB: BY LAB:	383508-383510 383512-383514 NONE 07/14/05 0819 C. PASSOW

SAMPLE:	SITE #5, INH	ALATION ROC	DM 812		TIME:	1618		
					START	START	END	
TEST	RESULT	UNITS	METHOD	INV #	DATE	TIME	DATE	INIT.
PSEUDOMONAS *	<1	PER 100 ML	SM#19 9215 D	383508	07/14/05	1505	07/15/05	JD
S I ÁNDARD PLATE COUNT	<1	CFU/ML	SM#20 9215 B	383510	07/14/05	1105	07/16/05	JD
TOTAL COLIFORM E. COLI	0 0	PER 100 ML PER 100 ML	EPA 600-R-00-013 EPA 600-R-00-013		07/14/05 07/14/05	1308 1308	07/15/05 07/15/05	

SAMPLE:	SITE #6, L-W	ING ROOM 45	8		TIME:	1617		
					START	START	END	
TEST	RESULT	UNITS	METHOD	INV #	DATE	TIME	DATE	INIT.
PSEUDOMONAS *	<1	PER 100 ML	SM#19 9215 D	383512	07/14/05	1505	07/15/05	JD
STANDARD PLATE COUNT	<1	CFU/ML	SM#20 9215 B	383514	07/14 <i>/</i> 05	1105	07/16/05	JD
TOTAL COLIFORM E. COLI	0 0	PER 100 ML PER 100 ML	EPA 600-R-00-013 EPA 600-R-00-013		07/14/05 07/14/05	1308 1308	07/15/05 07/15/05	MJG MJG

REMARKS:

THE ABOVE TEST RESULTS MEET ALL THE REQUIREMENTS OF NELAC AND RELATE ONLY TO THESE SAMPLES IS PARAMETER IS NOT CURRENTLY UNDER THE NELAC CERTIFICATION PROGRAM.

Aughanie () Mia DATE: July 25, M MANAGER: _____

. ,

BENCHMARK ANALYTICS 4777 SAUCON CREEK ROAD CENTER VALLEY, PA 18034-9004

PHONE (610) 974-8100 FAX (610) 974-8104

SEND DATA TO: NAME: COMPANY: ADDRESS:	Terry Kusznir Huntingdon Life Sciences PO Box 2360, Mettlers Road East Millstone, NJ 08875-236		INV #: PAGE:	383516-3 6 OF 6	383518
PHONE:	(732) 873-2550 x2100		PO #:		
FAX:	(732) 873-3992	TEST REPORT	PWS ID#	ŧ:	
PROJECT NAME: SAMPLED BY: LOCATION: DATE: TIME:	ANIMAL DRINKING WATER CARA KEIPER SEE BELOW 07/13/05 SEE BELOW		GRAB SAMPLES: COMPOSITE SAM DATE RECEIVED TIME RECEIVED RECEIVED FOR L	IPLES: BY LAB: BY LAB:	383516-383518 NONE 07/14/05 0819 C. PASSOW

SAMPLE:	SITE #7 PH/	ARMACY 1			TIME:	1605		
-					START	START	END	
TEST	RESULT	UNITS	METHOD	INV #	DATE	TIME	DATE	INIT.
PSEUDOMONAS *	<1	PER 100 ML	SM#19 9215 B	383516	07/14/05	1505	07/15/05	JD
STÁNDARD PLATE COUNT	1,140	CFU/ML	SM#20 9215 B	383518	07/14/05	1105	07/16/05	JD
TOTAL COLIFORM E. COLI	0 0	PER 100 ML PER 100 ML	EPA 600-R-00-013 EPA 600-R-00-013	383517 383517	07/14/05 07/14/05	1308 1308	07/15/05 07/15/05	Mjg Mjg

REMARKS:

THE ABOVE TEST RESULTS MEET ALL THE REQUIREMENTS OF NELAC AND RELATE ONLY TO HTESE SAMPLES

Stephani aluch MANAGER:

DATE: _ July 25, m

BENCHMARK ANALYTICS 4777 SAUCON CREEK ROAD CENTER VALLEY, PA 18034-9004

PHONE (610) 974-8100 FAX (610) 974-8104

SEND DATA TO:

NAME:	Terry Kusznir	INV #: 387033	
COMPANY:	Huntingdon Life Sciences		
ADDRESS:	PO Box 2360, Mettlers Road	PAGE: 1 OF 1	
	East Millstone, NJ 08875-2360		
		PO #:	
PHONE:	(732) 873-2550 x2100		
FAX:	(732) 873-3992 TEST REPORT	PWS ID#:	
		*******************	********
PROJECT NAME:	ANIMAL DRINKING WATER	GRAB SAMPLES:	NONE
	***************************************	GRAB SAMPLES: COMPOSITE SAMPLES:	NONE NONE
PROJECT NAME:	ANIMAL DRINKING WATER		
PROJECT NAME: SAMPLED BY:	ANIMAL DRINKING WATER TERRY KUSZNIR	COMPOSITE SAMPLES:	NONE
PROJECT NAME: SAMPLED BY: LOCATION:	ANIMAL DRINKING WATER TERRY KUSZNIR SEE BELOW	COMPOSITE SAMPLES: DATE RECEIVED BY LAB:	NONE 08/05/05

SAMPLE:	SITE #1, PHA	RMACY (DIST	TILLED WATER)					
					START	START	END	
TEST	RESULT	UNITS	METHOD	INV #	DATE	TIME		INIT.
STANDARD PLATE		CFU/ML	SM#20 9215 B	387033	08/05/05	1040	08/07/05	MJG
COUNT								

217,23,44

. Ì

REVIEWED

REMARKS:

IANAGER:

THE ABOVE TEST RESU	LTS MEET ALL THE REQUIREMENTS OF	F NELAC AND F	RELATE			PLES.	
			11. 14 an		· · ·		
				-			
1							
t al							

Auphani alipor

DATE: Aug 16, 2000

					ompany				
	PN	ysical a	<u>s unem</u>	lical Al	alyses		Date	August 9, 20	05
							Duto	ridguot 0, 20	
Seneral Source Raritan-Millstone	Plant								
Sample No. 1 Plant Delivered W	ater - 8:10 a.m.	8-9-05 MT						· · · · ·	
Sample No. 2 Sample No. 3									
Sample No. 4									
Sample No. 5									
Sample No. 6									
Sample No. 7									
Sample No. 8									
Parameter	MCL (mg/l)	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0
emperature * F		81				I			
Furbidity (NTU)	0.3 NTU	0.13			· · · · · ·	· · · · · ·			
Color	10 *	1.0							
fhreshold / Odor 40 ° C	3 TON *	2.6/3cc		-					
Threshold Taste	3 TTN *	3.0							
Conductivity (micromhos / cm)	•	308							
Hardness, Total (as mg / I CaCO3)	250 mg / I *	94							
Alkalinity	-	36							
рН	6.5-8.5 *	6.7							
Chlorine, Free / Total (mg / I Cl)	-	0.67/.74							
Calcium (as mg / 1 CaCO3)	-	66							
Magnesium (as mg / I CaCO3)		. 28					.,		
ron, Total (mg / 1 Fe)	0.3 mg/1*	ND							
Sulfates (mg / I SO4)	250 mg/1*	46.3		· .					
Chlorides (mg / I Cl)	250 mg/ i *	31.0			1				
		<0.1							
luoride (mg / I F)	2 mg / i*								
Total Dissolved Solids (mg / I)	500 mg / I *	204							
Total Suspended Solids (mg / I)	•	0.0							
Ammonia Nitrogen (mg / I N)	•	<0.05							
Nitrate Nitrogen (mg / I N)	10 mg / I	0.65							
Dissolved Oxygen (mg / I O2)	-	7.5							
BOD 5 (mg / I O2)		-							
Langelier Index	+/- 1.0	-2.10				· · · · ·			
Surfactants (mg / I LAS)	0.5 mg / 1*	<0.05							
Hydrogen Sulfide (mg / I H2S as S)	-	0							
Nitrite Nitrogen (mg / I N)	1 mg / l	<.01					•		
Phosphate (mg / 1 PO3)	-	<.05							
Manganese (mg / I MN)	0.05 mg / I*	ND							_
	5 mg/i *	0.54							
Zinc		1.58							
Zinc T.O.C. (mg / l)	5 ma/l *							ະກ	
Zinc T.O.C. (mg / i)	5 mg/l *								
T.O.C. (mg / l)	5 mg/l *					Laboratory A	Analyst DS		
							Analyst: DE		

Sterigenics.

Sterigenics * 305 Enterprise Drive * Westerville, Ohio 43081 * USA * 614-888-4077 * FAX 614-888-4223 * www.sterigenics.com

Certificate of Processing

MATERIALS PROCESSED:

Qty	Product	Description	Lot Number	LOT #
1,680 1	BED'O COB 1/4" BAG SAMPLE-506		DC295 DC295	425RB 425RB

1,681 Bags Total

Minimum	Dose:	28.4	kGy
Maximum	Dose:	52.1	kGy

Sterigenics certifies that the materials listed above (as described by its Manufacturer) received the indicated doses within the precision and accuracy of the dosimetry system employed:

QA 111 Certified By:

Date: 05/10/05

ISO 9001:2000 REGISTERED

Page 1 of 1

Original

A-12 05-4287 Jmg 28 Feb 01

NAMSA

PEOPLE > SCIENCE > SOLUTIONS

Confidential MS005_00P

Ted Weaver Andersons P.O. Box 119 Maumee, OH 43537

Lab No. P.O. No. Test Facility:

05T_38013_01 TED WEAVER NAMSA 6750 Wales Road Northwood, OH 43619

STERILITY TEST

Test Article:"425URB" - Bed O' Cobs; Lot #DC295ID No.Lot: DC295Procedure/Test Method:S-20431-01-00/ImmersionTest Article Received:May 19, 2005Test Start Date:May 20, 2005Test Termination Date:June 3, 2005Number of Products Tested:1

STERILITY TEST RESULTS Test Article Identity Maintained as Submitted by Client

Articles Tested	Number of Articles Tested	Type of Media	Incubation Temperature (Degrees C)	Number of Days Incubated	Number of Positive Articles
Product Section	1	SCDB-400 ml	20-25	14	0
Product Section	1	FTM-400 ml	30-35	14	0

SCDB = Soybean Casein Digest Broth FTM = Fluid Thioglycollate Medium

Results and conclusions apply only to the test article tested. No further evaluation of these results is made by NAMSA. Any extrapolation of these data to other samples is the responsibility of the sponsor. All procedures were conducted in conformance with good laboratory practice and ISO 17025.

Record Storage: All raw data pertaining to this study and a copy of the final report are to be retained in designated NAMSA archive files for a period of 5 years.

cal Date Completed Approved By

Michelle R. Pierce

Page 1 of 1

Manager, Microbiology

5

Authorization for duplication of this report, except in whole, is recorved pending NAMSA's written approval.

A-12 05-4287, mo 28 FUNK

PROTOCOL

GASOLINE DIPE VAPOR CONDENSATE

EMBRYO-FETAL TOXICITY STUDY IN RATS BY INHALATION EXPOSURE

HLS Study No.: Protocol Version: Date: 05-4287 Final Protocol 3 August 2005 Huntingdon Life Sciences Study No. 05-4287

PROTOCOL SIGNATURES/PREFACE

Final Protocol

Study Title:

Gasoline DIPE Vapor Condensate: Embryo-Fetal Toxicity Study in Rats by Inhalation Exposure

HLS Study No.: 05-4287 Sponsor Study No.: 211-DIPE-DEV

This is the Final Protocol. It has been reviewed and approved by:

Keith P. Hazelden, BSc, CBiol, MIBiol Study Director Huntingdon Life Sciences (HLS) Address: 100 Mettlers Road East Millstone, NJ 08875-2360 Phone No.: 732-873-2550 x2590 Fax No.: 732-873-3992 Email: hazeldek@princeton.huntingdon.com

Date

<u> 3 August 05</u> Date tom Gray Thomas M. Gray, M.S., D.A.B.T. Sponsor Representative

American Petroleum Institute (API) Address: 1220 L Street, Northwest Washington, D.C. 20005-4070 Phone No.: 202-682-8480 Fax No.: 202-682-8270 Email: grayt@api.com

Ship Unused Test Substance and	Name:	Michael C. Henley
Empty Test Substance Containers to:	Supplier:	ChevronTexaco Energy
		Technology Company
	Address:	100 Chevron Way
		Richmond, CA 94802-0627
	Phone No.:	510-242-3062
	Fax No.:	510-242-5542
	Email:	mche@chevron.com

Huntingdon Life Sciences Study No. 05-4287

Final Protocol

TABLE OF CONTENTS

1.]	INTRODUCTION1
2.	STUDY PERSONNEL1
3.	PROPOSED STUDY DATES1
4.]	EXPERIMENTAL DESIGN
4.1.	
ADN	AINISTRATION4
4.2.	
4.3.	
4.4.	EXPOSURE LEVEL SELECTION AND JUSTIFICATION4
5. '	TEST SUBSTANCE4
5.1.	TEST SUBSTANCE
5.2.	IDENTIFICATION OF TEST SUBSTANCE
5.3.	ARCHIVAL SAMPLES
5.4.	UNUSED TEST SUBSTANCE
6. '	TEST ANIMALS5
6.1.	SPECIES
6.2.	SUPPLIER
6.3.	ANIMAL REQUIREMENTS/SPECIFICATIONS
6.4.	ACCLIMATION PERIOD
6.5.	ANIMAL CARE AND HUSBANDRY6
6.6.	ANIMAL HUSBANDRY DURING EXPOSURE8
6.7.	ANIMAL IDENTIFICATION
6.8.	ASSIGNMENT OF ANIMALS INTO GROUPS9
7 . ′	TEST SUBSTANCE ADMINISTRATION9
7.1.	ROUTE OF ADMINISTRATION9
7.2.	FREQUENCY OF ADMINISTRATION9
7.3.	DURATION OF ADMINISTRATION
7.4.	ADMINISTRATION OF TEST SUBSTANCE9
7.5.	EXPOSURE CONCENTRATION DETERMINATION10
7.6.	PARTICLE SIZE DISTRIBUTION ANALYSIS10
7.7.	CHAMBER AND EXPOSURE ROOM ENVIRONMENT11
7.8.	SUMMARY OF CHAMBER ACTIVITY
8.]	IN-LIFE EXPERIMENTAL OBSERVATIONS11
8.1.	CLINICAL OBSERVATIONS
8.2.	BODY WEIGHTS

	don Life Sciences o. 05-4287	Final Protocol
8.3.	FEED CONSUMPTION	12
9. T	ERMINAL OBSERVATIONS	13
9.1.	METHOD OF EUTHANASIA	13
	MACROSCOPIC POSTMORTEM EXAMINATIONS	
9.3.	FETAL EVALUATIONS	14
10. A	RCHIVING OF RECORDS AND SPECIMENS	15
11. ST	TATISTICAL EVALUATIONS	15
11.1.	CONTINUOUS DATA	15
11.2.	INCIDENCE DATA	
12. R	EPORTING	
12.1.	STATUS REPORTS	
12.2.	FINAL REPORT	
12.3.	ROBUST SUMMARY	20
13. R	EGULATORY REFERENCES	20
13.1.	TEST GUIDELINES	20
13.2.	GOOD LABORATORY PRACTICES	
13.3.	ANIMAL WELFARE ACT COMPLIANCE	21
13.4.	INSTITUTIONAL ANIMAL CARE AND USE COMMITTE	E (IACUC)22
14. Q	UALITY ASSURANCE MONITORING	22
15. Al	LTERATION OF PROTOCOL AND STUDY DESIGN	22

Huntingdon Life Sciences	Page 1
Study No. 05-4287	Final Protocol

1. INTRODUCTION

HLS Study No.:

Study Title:

Test Substance:

Testing Facility:

05-4287

Gasoline DIPE Vapor Condensate: Embryo-Fetal Toxicity Study in Rats by Inhalation Exposure

Gasoline DIPE Vapor Condensate

Huntingdon Life Sciences 100 Mettlers Road East Millstone, NJ 08875-2360

Purpose:

The study is designed to assess the potential maternal and/or developmental toxicity of Gasoline DIPE Vapor Condensate in the pregnant rat when administered by whole-body inhalation exposure. The study should permit detection of gross maternal organ changes and effects on the developing conceptus, including death, structural abnormalities or altered growth.

This particular study is a near replicate of a previous study conducted by ExxonMobil Biomedical Sciences, Inc. (EMBSI Study Number 171734). The previous study is incomplete due to technical errors made in evaluating the fetuses. The Sponsor needs to repeat the previous study to satisfy the Environmental Protection Agency's Alternative Tier 2 Testing Requirements under Sections 211(b) (2) of the Clean Air Act.

2. STUDY PERSONNEL

Study Director

Alternate Contact

Gary M. Hoffman, B.A., DABT Inhalation Toxicologist Tel.: 732-873-2550 x2920 Email: hoffmang@princeton.huntingdon.com

Keith P. Hazelden, BSc, CBiol, MIBiol

Additional key personnel will be documented in the project file and presented in the final report.

۰. ,۰

۰:

Huntingdon Life Sciences Study No. 05-4287		Page 2 Final Protocol
3.	PROPOSED STUDY DATES	
	Study Initiation Date	Date Study Director Signs Protocol
	Receipt of test animals:	4 August 2005 (GD 0, 1, 2 or 3)
	Initiation of exposures:	6 August 2005 (Experimental Start Date) (First GD 5)
	Termination of exposures:	24 August 2005 (Last GD 20)
	Necropsy:	22-25 August 2005 (GD 21)
	Experimental Termination:	November 2005 (Date of last data collection)
	Submission of Draft Final Report:	30 December 2005
	Study Completion Date:	Date Final Report signed by Study Director

Huntingdon Life Sciences	Page 3
Study No. 05-4287	Final Protocol

4. EXPERIMENTAL DESIGN

					Nu	umber of Animals		
							etal Evalua (Fetuses/Li	
Group	Group Designation	Exposure Levels (mg/m3) ^a	Treatment Gestation Days	Time- Mated Females	Euthanized Gestation Day 21 ^b	External	Soft Tissue	Skeletal
1	Control	0 (air only)	5-20	24	All	All	~1/2	~1/2
2	Low	2000	5-20	24	All	All	~1/2	~1/2
3	Mid	10000	5-20	24	All	All	~1/2	~1/2
4	High	20000	5-20	24	All	All	~1/2	~1/2

^aExposures will be 6 hours per day for 7 consecutive days per week for gestation days 5-20. Exposure levels are expressed as mg/m3 of test substance. The exposures will be conducted via whole-body exposure. Control animals will be treated with air only with the same treatment regimen as the treated groups.

^bPostmortem evaluations will also be performed on animals which are found dead or euthanized for humane reasons or in a moribund condition during the course of the study.

The first day of gestation (Gestation Day 0 =day of detection of positive sign of mating) will be defined as Day 0 of the study for each animal.

Huntingdon Life Sciences	Page 4
Study No. 05-4287	Final Protocol

4.1. JUSTIFICATION FOR ROUTE, DURATION AND FREQUENCY OF ADMINISTRATION

The inhalation route was used for the EMBSI study and is one of the potential routes of human exposure to this test substance. The duration and frequency of the exposures are as for the EMBSI study and as recommended in the relevant OECD and EPA test guidelines, ensuring adequate exposure of post-implantation embryo-fetal development.

4.2. JUSTIFICATION FOR TEST ANIMAL SELECTION

The rat was used for the EMBSI study and is used as a surrogate for humans in the detection of embryo-fetal toxicity and is the rodent species that is recommended by the relevant OECD and EPA test guidelines. Historical control data are also available with this strain of rat for comparative evaluation, if necessary.

4.3. JUSTIFICATION FOR NUMBER OF ANIMALS

The number of animals in this study is considered the minimum necessary to allow for meaningful interpretation of the data as required by OECD and EPA test guidelines. Some of the endpoints of principal interest (*eg* embryo-fetal death, fetal malformations) are low-frequency events and a group size of ~20 litters tends to provide the necessary degree of consistency between studies. In the expectation of pregnancy rates of 80-100%, the group size of 24 mated female rats is considered appropriate for this study and should provide a sufficient number of litters for evaluation in each group. Also, the number of animals is comparable to the number in the EMBSI study (25/group).

4.4. EXPOSURE LEVEL SELECTION AND JUSTIFICATION

The exposure levels were as used in the EMBSI study and as proscribed by the Sponsor based on the lower explosive limit of the test substance (low, intermediate and high levels were \sim 5, 25, and 50% of the LEL).

5. TEST SUBSTANCE

5.1. TEST SUBSTANCE

Gasoline DIPE (di-isopropyl ether) Vapor Condensate

TEST SUBSTANCE CATEGORY: gasoline product

Description, lot number, storage, expiration date (if available) and handling procedures, as well as other pertinent information will be

Huntingdon Life Sciences	Page 5
Study No. 05-4287	Final Protocol

documented in the study data and final report. The test substance is supplied by the Sponsor and will be stored (ambient conditions) in an outside solvent shed except when in use in the inhalation laboratory.

5.2. IDENTIFICATION OF TEST SUBSTANCE

Unless otherwise noted, the identity, strength, composition, stability and method of synthesis, fabrication and/or derivation of each batch of the test substance will be documented by the Sponsor before its use in the study. This documentation will be maintained by the Sponsor at the address indicated on the signature page of this protocol. The Sponsor has conducted a purity analysis of the test substance by GC prior to the start of this study. The Testing Facility will conduct a stability analysis of the test substance by GC prior to the start of this study.

5.3. ARCHIVAL SAMPLES

An archival sample from each lot of test substance will be taken and stored in the Archives of the Testing Facility. If multiple studies are conducted with the same substance, a common archival sample may be taken and appropriately labeled.

5.4. UNUSED TEST SUBSTANCE

The unused portion of the test substance as well as any empty test substance containers will be returned to the Sponsor's designee following completion of the study. Empty test substance containers will be returned to the Sponsor's designee on an as needed basis. The Sponsor will be responsible for tracking their disposition. In the event the Sponsor wishes the Testing Facility to arrange for disposal, a cost for this service will be provided.

6. TEST ANIMALS

6.1. SPECIES

Albino Rats (Outbred), Sprague Dawley - derived [Crl: CD[®] IGS BR, VAF/Plus[®]]

Huntingdon Life Sciences	Page 6
Study No. 05-4287	Final Protocol

6.2. SUPPLIER

Charles River Laboratories (Raleigh, NC): Documentation will be maintained in the study file and included in the final report. This supplier and facility are the same as in the EMBSI study.

6.3. ANIMAL REQUIREMENTS/SPECIFICATIONS

6.3.1. NUMBER

Order: 100 time-mated rats.

Place on study: 96 time-mated rats.

6.3.2. AGE AND WEIGHT

Time-mated female rats 70-84 days in age and weighing 210-250 grams on Gestation Day 0 will be purchased. Animals will be received on GD 0, 1, 2 or 3.

6.4. ACCLIMATION PERIOD

Animals will be acclimated for a minimum of 2 days from time of receipt until initiation of exposures (GD 5).

6.5. ANIMAL CARE AND HUSBANDRY

6.5.1. FACILITIES MANAGEMENT/ANIMAL HUSBANDRY

Currently acceptable practices of good animal husbandry will be followed, e.g., *Guide for the Care and Use of Laboratory Animals*; National Academy Press, 1996. Huntingdon Life Sciences Inc. is fully accredited by the Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC).

6.5.2. VETERINARY CARE

Animals are monitored by the technical staff for any conditions requiring possible veterinary care. If any such conditions are identified, a staff veterinarian will be notified for an examination and evaluation. Animals will be treated as outlined in the Animal Welfare Act Compliance section of this protocol. The staff veterinarian will approve the animals for inclusion on test.

Huntingdon Life Sciences	Page 7
Study No. 05-4287	Final Protocol

6.5.3. ENVIRONMENTAL CONDITIONS

Light/Dark Cycle

Twelve-hour light/dark cycle provided by an automatic timer.

Temperature

Temperature will be monitored in accordance with HLS SOPs to ensure that the desired range of 18-26°C is maintained. Temperature will be maintained within this range to the maximum extent possible. The actual temperature range will be included in the final report.

Humidity

Humidity will be monitored in accordance with HLS SOPs to ensure that the desired range of 30 to 70% is maintained. Humidity will be maintained within this range to the maximum extent possible. The actual humidity range will be included in the final report.

Air Changes

Animal quarters will have 10-15 air changes per hour. The actual number of air changes per hour in each animal room is recorded at least twice each year and the Testing Facility retains these records.

6.5.4. HOUSING

All animals will be housed individually in stainless steel suspended cages with wire mesh floors and fronts. Cages will be arranged in such a way that possible effects due to placement are minimized (as per EPA guideline). Each cage will be fitted to secure a glass feeder jar with a stainless steel lid. Clean feed jars and fresh feed will be provided at least every 7 days for periods when feed consumption is not being recorded and at least every 7 days when feed consumption will be recorded.

All dams after exposure on GD20 will be transferred to solid bottom cages with bedding material (ground corncobs).

6.5.5. FEED

Certified Rodent Diet, No. 5002; (Meal) (PMI Feeds, Inc., St. Louis, MO) *ad libitum* except during exposures.

Huntingdon Life Sciences	Page 8
Study No. 05-4287	Final Protocol

6.5.6. FEED ANALYSIS

Analytical certification of batches of feed provided by the manufacturer will be maintained on file at the Testing Facility and included in the final report. There are no known contaminants in the feed that are expected to interfere with the objectives of this study.

6.5.7. WATER

Facility water is supplied by Elizabethtown Water Company, (Westfield, NJ) and will be provided *ad libitum* except during exposures to individual animal cages through an automated watering system.

6.5.8. WATER ANALYSIS

Water analyses are conducted monthly by the Elizabethtown Water Company to ensure that water meets standards specified under the EPA Federal Safe Drinking Water Act Regulations (40 CFR part 141). Water analyses, provided by the supplier, will be maintained on file at the Testing Facility and included in the final report. In addition, water samples are collected biannually from representative rooms in the Testing Facility. Chemical and microbiological water analyses are conducted on these samples by a subcontract laboratory. Results are maintained on file at the Testing Facility and included in the final report. There are no known contaminants in the water that are expected to interfere with this study.

6.6. ANIMAL HUSBANDRY DURING EXPOSURE

Housing: Individually in stainless steel wire mesh cages.

Feed: None.

Water: None.

Huntingdon Life Sciences	Page 9
Study No. 05-4287	Final Protocol

6.7. ANIMAL IDENTIFICATION

Each animal will be assigned a temporary identification number upon receipt. After selection for study, each animal will be ear-tagged by the Testing Facility with a number assigned by the Testing Facility. The number assigned by the Testing Facility plus the study number will comprise the unique animal number for each animal. If the tag is lost, it will be replaced or the animal will be tattooed for identification. Each cage will be provided with a cage card that will be color-coded for exposure level identification and will contain the study number and animal number.

6.8. ASSIGNMENT OF ANIMALS INTO GROUPS

Animals will be placed into study groups using a computerized randomization program. This ranks Gestation Day 4 body weights into blocks and randomly assigns each animal within each block into one of the study groups. Animals may be replaced based on physical examinations and/or body weight changes up to GD 5, prior to exposures. Disposition of all animals not utilized in the study will be maintained in the study file.

7. TEST SUBSTANCE ADMINISTRATION

7.1. ROUTE OF ADMINISTRATION

Inhalation by whole-body exposures.

7.2. FREQUENCY OF ADMINISTRATION

Once daily.

7.3. DURATION OF ADMINISTRATION

The test substance will be administered for 6 hours/day, 7 days per week for Gestation Days (GD) 5-20. The duration of administration was chosen to be the same as in the EMBSI study.

7.4. ADMINISTRATION OF TEST SUBSTANCE

The test substance will be administered as a **vapor** in the breathing air of the animals. The test atmosphere will be generated by an appropriate procedure determined during pre-study trials. The trials will be performed (at least three 6-hour periods) to evaluate the optimal set of conditions and equipment to generate a stable and uniform atmosphere at the target exposure levels. The method will be described in the raw data of the study and in the report.

Huntingdon Life Sciences	Page 10
Study No. 05-4287	Final Protocol

The whole-body exposure chambers will each have a volume of approximately 1000 liters. Each chamber will be operated at a minimum flow rate of 200 liters per minute. The final airflow will be set to provide at least one air change in 5.0 minutes (12 air changes/hour) and a T99 equilibrium time of at most 23 minutes. This chamber size and airflow rate is considered adequate to maintain the oxygen level at least 19% and the animal loading factor below 5%. At the end of the exposure, all animals will remain in the chamber for a minimum of the T_{99} equilibrium time. During this time, the chamber will be operated at approximately the same flow rate using clean air only.

7.5. EXPOSURE CONCENTRATION DETERMINATION

A nominal exposure concentration will be calculated. The flow of air through the chamber will be monitored using appropriate calibrated equipment. The test substance consumed during the exposure will be divided by the total volume of air passing through the chamber (volumetric flow rate times total exposure time) to give the nominal concentration.

During each exposure, measurements of airborne concentrations will be performed in the animals' breathing zone at least 4 times using an appropriate sampling procedure and IR analytical procedure. Also, one sample per chamber per week will be analyzed by gas chromatography (GC) to characterize at least 10 major components (comprising at least 80% by weight of the test substance) to show test substance stability and comparison between the neat liquid test substance and the vaporized test atmospheres.

If more than the normal amount of trials is required because of test substance generation or monitoring problems (80 technician hours), the Sponsor will be consulted prior to additional trials (additional cost).

7.6. PARTICLE SIZE DISTRIBUTION ANALYSIS

During each week of exposure, particle size determinations will be performed using a TSI Aerodynamic Particle Sizer to demonstrate the absence of any condensation aerosol.

Huntingdon Life Sciences	Page 11
Study No. 05-4287	Final Protocol

7.7. CHAMBER AND EXPOSURE ROOM ENVIRONMENT

Chamber temperature, humidity, airflow rate and static pressure will be monitored continuously and recorded every 30 minutes during exposure. Chamber temperature and relative humidity will be maintained, to the maximum extent possible, between 20 to 24°C and 40 to 60%, respectively. Chamber oxygen levels (maintained at least 19%) will be measured pretest and at the beginning, middle and end of the study.

Air samples will be taken in the vapor generation area pretest and at the beginning, middle and end of the study. Light (maintained approximately 30-40 foot-candles at 1.0 meter above the floor) and noise levels (maintained below 85 decibels) in the exposure room will be measured pretest and at the beginning, middle and end of the study.

7.8. SUMMARY OF CHAMBER ACTIVITY

The minimum frequency of chamber activity is summarized below:

Activity	Frequency/chamber
Measured Test Substance Concentration	4X/day
Measured Test Substance Characterization	1X/week
Particle Size	1X/week
Temperature	13X/day
Relative Humidity	13X/day
Airflow Rate	13X/day
Static Pressure	13X/day
Nominal Test Substance Concentration (excluding the air control chamber)	1X/day
Rotation Pattern of Exposure Cages	1X/day
Loading/Unloading Verification	1X/day

8. IN-LIFE EXPERIMENTAL OBSERVATIONS

Huntingdon Life Sciences	Page 12
Study No. 05-4287	Final Protocol

8.1. CLINICAL OBSERVATIONS

8.1.1. VIABILITY OBSERVATIONS (cage-side)

Observations for mortality, morbidity, and signs of severe toxicity will be made at least twice daily. Animals in extremely poor health or in a possibly moribund condition will be identified for further monitoring and possible euthanasia.

8.1.2. DETAILED PHYSICAL EXAMINATIONS

In-Chamber: All animals will be observed as a group at least once during each exposure. This will routinely be performed near the middle of each exposure and may be performed more frequently if significant signs of toxicity are noted. Pertinent behavioral changes and all signs of toxicity, including mortality, should be recorded. These signs should include time of onset, degree and duration.

Out-of-Chamber: Animals on study will be examined daily from day after receipt through to terminal euthanasia on GD 21. Examinations will include observations of general condition, skin and fur, eyes, nose, oral cavity, abdomen and external genitalia, occurrence of secretions and excretions, and autonomic activity (e.g., lacrimation, piloerection, pupil size, unusual respiratory pattern). Changes in gait, posture and response to handling as well as the presence of clonic or tonic movements, stereotypy (e.g., excessive grooming, repetitive circling) or bizarre behavior (e.g., self-mutilation, walking backward) will be recorded as well as evaluations of respiration. During the treatment period, these evaluations will be performed after exposures.

8.2. BODY WEIGHTS

Body weights will be recorded on GD 4 (for randomization into test groups), 5, 8, 11, 14, 17, 20 and 21 (day of scheduled sacrifice). Weight gain will be calculated for intervals as found appropriate, including (but not limited to) GD 5-14, GD 14-21 and 5-21.

8.3. FEED CONSUMPTION

Feed consumption will be recorded and reported for these intervals: GD 4-5, 5-8, 8-11, 11-14, 14-17, 17-20, 20-21 and 5-21.

Huntingdon Life Sciences	Page 13
Study No. 05-4287	Final Protocol

9. TERMINAL OBSERVATIONS

9.1. METHOD OF EUTHANASIA

All dams will be euthanized (by noon) by an overdose of carbon dioxide inhalation. All live fetuses will be euthanized by an intraperitoneal overdose of sodium pentobarbital.

9.2. MACROSCOPIC POSTMORTEM EXAMINATIONS

A macroscopic postmortem examination will be performed on all the dams, including those dying spontaneously or euthanized for humane reasons or in either a moribund condition or after prematurely delivering a litter. Macroscopic lesions or tissues with significant findings will be saved (10% Neutral Buffered Formalin).

Females that are found dead or sacrificed prior to scheduled termination will have implantation data (*ie* number of fetuses and early/late embryo-fetal deaths) determined at necropsy. Corpora lutea will be counted for these animals.

Females that do not have fetuses when caesarean-sectioned will have their uterus' examined for implantation sites and resorptions, including confirmation of apparent non-pregnant status, by means of staining with ammonium sulphide (modified Salewski test).

Dams showing signs of premature delivery will be euthanized on the day such evidence is observed. Reproductive tracts will be examined for implantation data (implantation sites, live/dead fetuses and early/late embryo-fetal deaths). Fetuses obtained earlier than Gestation Day (GD) 21 will be counted, sexed externally, evaluated for external malformations, euthanized and discarded. Corpora lutea will be counted for these animals.

Any dams initiating delivery on GD 21 will be immediately euthanized and the fetuses processed with the other GD 21 fetuses.

Dams surviving on GD 21 will have the following examinations of their pregnancies:

Huntingdon Life Sciences	Page 14
Study No. 05-4287	Final Protocol

9.2.1. Reproductive System

The intact uteri (ovaries attached) will be removed from the abdominal cavity. The gravid uteri, including the cervix, will be weighed. Corpora lutea will be counted and the number per ovary recorded. The number and location of the following will be recorded for each uterine horn:

- live fetuses
- dead fetuses (no significant degeneration)
- late embryo-fetal deaths (recognizable dead fetus undergoing degeneration, regardless of size)
- early embryonic deaths (evidence of implantation but no recognizable fetus)

Each placenta will be examined macroscopically. The maternal carcass, uterus, ovaries and placenta will then be discarded.

9.3. FETAL EVALUATIONS

9.3.1. External Evaluations

All live fetuses will be weighed and individually identified within cassettes. Each live and dead retained fetus will be given a macroscopic external examination for defects including observation of the palate.

9.3.2. Fetal Soft Tissue (Visceral) Evaluation

Approximately one-half of the fetuses in each litter (alternating fetuses within the litter, nominally) will be placed in Modified Davidson's fixative for preservation and decalcification. These fetuses will be subjected to soft tissue examination by gross dissection of the torso and a razor blade sectioning technique for the head (derived from that of Wilson, J.S., Warkany, J. (1965), Teratology: Principles and Techniques. The University of Chicago Press. Chicago and London. Page 271). All malformations and variations will be recorded. Particular attention will be paid to the reproductive tract for altered signs of development. Unusual malformations or developmental findings will be photographed. During the dissection process, the sex of each fetus will be confirmed by internal inspection of the gonads. Following complete dissection of the fetuses, all carcasses and sections will be preserved in 10% neutral buffered formalin.

Huntingdon Life Sciences	Page 15
Study No. 05-4287	Final Protocol

9.3.3. Fetal Skeletal Evaluations

Approximately one-half of the fetuses in each litter (alternating fetuses within the litter, nominally) will be eviscerated, placed in 70% isopropyl alcohol for preservation and processed for staining of the skeleton using Alizarin Red S. Subsequently, these fetuses will be evaluated for skeletal malformations and ossification variations. These skeletons will then be stored in 100% glycerin with a mold inhibitor. During the dissection process, the sex of each fetus will be confirmed by internal inspection of the gonads.

9.3.4. Dead Fetuses

These will be removed from the uterus and examined for external malformations. Only those with obvious external malformations will be preserved (10% neutral buffered formalin) for possible future examination. All other dead fetuses, and early embryonic deaths, will be discarded.

10. ARCHIVING OF RECORDS AND SPECIMENS

All data documenting experimental details and study procedures and observations will be recorded and maintained as raw data.

At the completion of the study, all reports, raw data, preserved specimens and retained samples will be maintained in the Testing Facility's Archives for a period of one year after submission of the signed final report.

The Sponsor will be contacted in order to determine the final disposition of these materials. The Sponsor is responsible for all costs associated with the storage of these materials beyond one year from the issuance of the final report and for any costs associated with the shipment of these materials to the Sponsor or to any other facility designated by the Sponsor.

11. STATISTICAL EVALUATIONS

Analysis will be performed by Graham Healey (Principal Investigator) of Huntingdon Life Sciences Ltd, Woolley Road, Alconbury, Huntingdon, Cambridgeshire, PE28 4HS, England. The Testing Facility will be responsible for the GLP compliance and the archiving of the raw data and original final report.

11.1 CONTINUOUS DATA

The following mean measures will be analyzed as described below:

Huntingdon Life Sciences	Page 16
Study No. 05-4287	Final Protocol

maternal body weight values and body weight changes during gestation (Note: body weight measurements will only be compared to GD 5 values or subsequent relevant values)

maternal feed consumption values (presented as grams of feed/kg of body weight/day)

gravid uterine weights

corpora lutea

implantation data

pre-implantation loss

early embryonic deaths (evidence of implantation but no recognizable fetus)

live fetuses

dead fetuses (no significant degeneration)

late embryo-fetal deaths (recognizable dead fetus undergoing degeneration, regardless of size)

total embryo-fetal deaths and as % of implant sites

number of males and females per litter

Mean values of all exposure groups will be compared to the mean value for the control group at each time interval. Evaluation of equality of group means will be made by the appropriate statistical method (either parametric or non-parametric methods), followed by a multiple comparison test if needed. Bartlett's test (Bartlett, 1937; Sokal and Rohlf, 1995; Snedecor and Cochran, 1967) will be performed to determine if groups have equal variances. For all parameters if the variances are equal, parametric procedures will be used; if not, nonparametric procedures will be used.

The parametric method will be the standard one-way analysis of variance (ANOVA) using the F ratio to assess significance (Armitage, 1971; Dunlap and Duffy, 1975). If significant differences among the means are indicated Dunnett's (Dunlap et al., 1981; Dunnett, 1955, 1964) test will be used to determine which means are significantly different from the control. The nonparametric method will be the Kruskal-Wallis test (Kruskal and Wallis, 1952, 1953) and if differences are indicated, Steel's test (Steel, 1959) will be used to determine which means differ from control. Bartlett's test for equality of variance will be conducted at the 1% significance level; all other statistical tests will be conducted at the 5% and 1% significance levels.

References for these procedures are:

Huntingdon Life Sciences	Page 17
Study No. 05-4287	Final Protocol

Armitage, P. 1971. Statistical Methods in Medical Research. Oxford, UK: Blackwell Scientific Publications.

Bartlett, M.S. 1937. Properties of sufficiency and statistical tests. Proceedings of the Royal Society, Series A 160:268-282.

Dunlap, W.P. and Duffy, J.A. 1975. Fortran IV functions for calculating exact probabilities associated with z, chi-Square, t and F Values. Behav. Res. Methods and Instrumentations 7:59-60.

Dunlap, W.P., Marx, M.S. and Agamy, G.G. 1981. Fortran IV functions for calculating probabilities associated with Dunnett's test. Behav. Res. Methods and Instrumentation 13: 363-366.

Dunnett, C.W. 1955. A multiple comparison procedure for comparing several treatments with a control. Journal of the American Statistical Association 50: 1096-1121.

Dunnett, C.W. 1964. New tables for multiple comparisons with a control. Biometrics 20: 482-491.

Kruskal, W.H. and Wallis, W.A. 1952. Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association 47: 583-621.

Kruskal, W.H. and Wallis, W.A. 1953. Errata for Kruskal-Wallis (1952) Journal of the American Statistical Association 48: 907-911.

Snedecor, G.W. and Cochran, W.G. (1989) Statistical Methods. 8th edition Iowa State University Press, Iowa, USA.

Sokal, R.R. and Rohlf, F.J. 1995. Biometry. 3rd Edition. San Francisco: W.H. Freeman, pp. 369-371.

Steel, R.G.D. 1959. A multiple comparison rank sum test: treatment versus control. Biometrics 15: 560-572.

11.1.1 FETAL BODY WEIGHT

The fetal body weight (by sex and as a composite for both sexes) will be analyzed by a mixed model analysis of variance that provides an accurate statistical model of the biology. The analysis uses the litter as the basis for analysis and effectively uses the litter size as a covariate. The model considers dose group, litter size, and fetal sex as explanatory variables. If the dose group effect in the model is statistically significant, the dose group least squares means will be tested pairwise vs the control group using t-tests associated with least squares means. The least squares means allows comparisons that account for differences in litter size and sex. The mathematical model is based on a paper by Chen et. al. (1996). Statistical

Huntingdon Life Sciences	Page 18
Study No. 05-4287	Final Protocol

significance of differences from control will be recognized at the 5% or 1%, two-sided levels.

Reference:

Chen, J.J., Gaylor, D.W. and Laborde, J.B. 1996. Dose-response modeling of growth for developmental toxicity. Environmetrics 7:135-144.

11.2 INCIDENCE DATA

premature deliveries

total pregnancy loss (no live fetuses)

maternal necropsy findings

external fetal defects

skeletal malformations and variations

soft tissue malformations and variations

These data will be analyzed based on a Generalized Estimating Equation (GEE) application of the linearized model (Ryan, 1992). For litter endpoints, the model uses the litter as the basis for analysis and considers correlation among littermates by incorporating an estimated constant correlation and the litter size as a covariate. If the dose group effect in the model is statistically significantly the dose group least squares means will be tested pairwise vs. the control group using t-tests associated with least squares means. The least squares means allows comparisons that account for differences in litter size. Statistical significance of differences from control will be recognized at the 5% or 1%, two-sided levels.

Reference:

Ryan, L. 1992. The use of generalized estimating equations for risk assessment in developmental toxicity. Risk Analysis, 12:439-447.

12. **REPORTING**

12.1. STATUS REPORTS

Periodic verbal and written updates on study progress will be provided by the Study Director. In general, a written status report will be submitted weekly and following completion of the GD21 terminations.

Huntingdon Life Sciences	Page 19
Study No. 05-4287	Final Protocol

12.2. FINAL REPORT

One unbound hard copy and one electronic copy of an audited draft report will be submitted following termination of the study. After receipt and review of the Sponsor's comments, appropriate changes will be made and an unbound hard copy and electronic copy of the revised report will be forwarded to the Sponsor for a final review. Upon receipt of the Sponsor's final comments, appropriate changes will be made and two hard copies and one electronic copy of a signed, final report will be issued. (Additional copies will be provided at additional cost). The report will minimally include:

12.2.1. Body of Report

- Compliance Statement (including Sponsor signature line)
- Quality Assurance Statement
- Abstract
- Introduction
- Experimental Design (including justifications for exposure levels)
- Materials and Methods
- Results and Discussion
- Conclusion and No-Observed-Effect-Level (NOEL) or No-Observed-Adverse-Effect-Level (NOAEL) Statement
- Statistical Procedures
- Protocol Deviations and Study Impact Statements

12.2.2. Summary Tables

- Exposure data
- Mortality data
- Pregnancy data
- Summary of maternal physical in-life observations
- Maternal body weight and weight change data during gestation
- Maternal feed consumption data
- Mean number of corpora lutea and implantation sites
- Mean number and percent of resorptions and live fetuses
- Summary of maternal macroscopic postmortem examination data including gravid uterine weights
- Pre-implantation loss
- Post-implantation loss
- Mean fetal weight
- Total number of male and female fetuses per group and mean percent male/percent female per group

Huntingdon Life Sciences	Page 20
Study No. 05-4287	Final Protocol

• Incidence of litters and fetuses with observations (external, visceral and skeletal)

12.2.3. Appendix Tables (Individual data)

- Individual animal termination history
- Individual clinical observations
- Individual maternal body weight data and weight change data
- Individual maternal feed consumption data
- Individual uterine implantation data and corpora lutea data
- Maternal macroscopic postmortem observations
- Individual fetal observations (external, visceral and skeletal)

12.2.4. Appendices

- Inhalation report
- Analytical results
- Feed and water analysis
- Personnel involved in the study
- Protocol and Amendment(s)

12.3. ROBUST SUMMARY

This report will be separately provided by the Testing Facility's UK office in both IUCLID and WORD[®] electronic formats.

13. REGULATORY REFERENCES

13.1. TEST GUIDELINES

This study is designed to meet or exceed the pertinent requirements of:

US EPA Vehicle Emissions Inhalation Exposure Guideline 79.61, CFR Vol. 59, No. 122, 27 June 1994.

Organization for Economic Cooperation and Development (22 January 2001). OECD Guidelines for Testing of Chemicals; OECD Guideline 414: Prenatal Developmental Toxicity Study.

US EPA OPPTS Health Effects Test Guidelines 870.3700, Prenatal Developmental Toxicity Study EPA 712-C-98-207, August 1998.

Huntingdon Life Sciences	Page 21
Study No. 05-4287	Final Protocol

13.2. GOOD LABORATORY PRACTICES

This study will be conducted in accordance with US EPA 79.60, CFR Vol. 59, No. 122, 27 June 1994. This study will be performed according to protocol and Huntingdon Life Sciences' Standard Operating Procedures.

13.3. ANIMAL WELFARE ACT COMPLIANCE

This study will comply with all appropriate parts of the Animal Welfare Act regulations: 9 CFR Parts 1 and 2 Final Rules, Federal Register, Volume 54, No. 168, August 31, 1989, pp. 36112-36163 effective October 30, 1989 and 9 CFR Part 3 Animal Welfare Standards; Final Rule, Federal Register, Volume 56, No. 32, February 15, 1991, pp. 6426-6505 effective March 18, 1991. The Sponsor should make particular note of the following:

- 1. The Sponsor's signature on this protocol documents for the study described, there are no generally accepted non-animal alternatives and the study does not unnecessarily duplicate previous experiments.
- 2. All procedures used in this study have been designed to avoid discomfort, distress and pain to the animals. All methods are described in this study protocol or in written laboratory standard operating procedures.
- 3. Any procedures outlined in this study protocol which are expected to cause more than momentary or slight pain or distress to the animals will be performed with appropriate sedatives, analgesics or anaesthetics unless the withholding of these agents is justified for scientific reasons, in writing, by the Sponsor and the Study Director and approved by the IACUC; in which case the procedure will continue for the minimum time necessary. Documentation of the justification for withholding treatment for pain or distress and IACUC approval of the procedures will be made prior to study initiation on the IACUC Protocol Review form.
- 4. Animals experiencing more than momentary or slight pain or distress due to the test substance, injury or illness may be treated by the Testing Facility's veterinary staff with approved analgesics or agents to relieve pain after consultation with the Study Director/Sponsor. However, in emergency situations, the veterinary staff is authorized to administer emergency treatment as necessary. Any subsequent treatment or euthanasia will be administered after consultation with the Study

Huntingdon Life Sciences	Page 22
Study No. 05-4287	Final Protocol

Director. The Sponsor will be advised by the Study Director of all emergency situations in as timely a manner as possible.

5. Methods of euthanasia used during this study are in conformance with the above referenced regulations.

13.4. INSTITUTIONAL ANIMAL CARE AND USE COMMITTEE (IACUC)

The IACUC Protocol Review subcommittee has reviewed this protocol and found it to be in compliance with all appropriate animal welfare regulations.

14. QUALITY ASSURANCE MONITORING

The Quality Assurance Unit of Huntingdon Life Sciences (East Millstone, NJ) will monitor the facilities, equipment, personnel, methods, practices, records, protocols, study conduct, raw data, draft and final reports and controls used/produced at the Testing Facility in this study, to assure that they are in conformance with this protocol, company Standard Operating Procedures, and the appropriate Good Laboratory Practice regulations.

15. ALTERATION OF PROTOCOL AND STUDY DESIGN

Alterations to this protocol may be made as the study progresses. No changes in the protocol will be made without the consent of the Sponsor. In the event that the Sponsor authorizes a protocol change verbally, such changes will be honored by the Testing Facility and will be followed by a written verification. The Study Director and a Sponsor representative will sign all protocol modifications. Two members of the Institutional Animal Care and Use Committee prior to the modification's implementation will also sign any modifications potentially affecting animal welfare.

Page 1

Protocol Amendment No.: 1

Gasoline DIPE Vapor Condensate: Embryo-Fetal Toxicity Study in Rats by Study Title: Inhalation Exposure

No. of Pages in Amendment: 1

Change(s)

Protocol Page 2:

The date for experimental termination (date of last data collection) is amended from November to December 2005.

The date for issue of the Draft Final Report (audited) is amended from 30 December 2005 to 12 January 2006.

Reason(s) for Change(s)

To assist with the logistics of fetal examinations, and report production, audit and review, prior to issue of the draft report.

Amendment approved by:

Keith P Hazelden Study Director Huntingdon Life Sciences East Millstone, New Jersey

or Sponsor

23 Aug 05

Date

<u>| Sept. 05</u> Date

Page 1

Huntingdon Life Sciences

Protocol Amendment No.: 2

Study Title: Gasoline DIPE Vapor Condensate: Embryo-Fetal Toxicity Study in Rats by Inhalation Exposure

No. of Pages in Amendment: 2

Changes (inserted text underlined)

Protocol Page 15:

9.3.3. Fetal Skeletal Evaluations

Approximately one-half of the fetuses in each litter (alternating fetuses within the litter, nominally) will be eviscerated, placed in 70% isopropyl alcohol for preservation and processed for staining of the skeleton using Alizarin Red S. Subsequently, these fetuses will be evaluated for skeletal malformations and ossification variations by an approved subcontractor, Michael Mercieca (Principal Investigator) of Pathology Associates International (PAI), 15 Worman's Mill Court, Suite 1, Frederick, MD 21701, USA. The skeletons will then be stored in 100% glycerin with a mold inhibitor. During the dissection process, the sex of each fetus will be confirmed by internal inspection of the gonads.

The Testing Facility will be responsible for the GLP compliance and archiving of raw data produced by the subcontractor.

Reason for Changes

To assist with the logistics of fetal examinations and ensure timely report production, the skeletal evaluations are being subcontracted to an approved contractor.

There are no additional cost implications associated with this change.

Huntingdon Life Sciences

05-4287

Page 2

Protocol Amendment No.: 2

Amendment approved by:

K.P. Hageker

Keith P Hazelden Study Director Huntingdon Life Sciences East Millstone, New Jersey

28 October 2005

Date

Jary love For Sponsor

November 2 2005 Date

Huntingdon Life Sciences	05-4287	Pag
_	211-DIPE-DEV	-

Page 30

Protocol Amendment No.: 3

Study Title: Gasoline DIPE Vapor Condensate: Embryo-Fetal Toxicity Study in Rats by Inhalation Exposure

Change(s)

Protocol Signatures/Preface Page and Page 1, Section 2 Study Personnel, update Study Director From: Keith P. Hazelden, BSc, CBiol, MIBiol

To: Gary M. Hoffman, BA, DABT Tel: 732-873-2550 x 2920 Email: HoffmanG@Princeton.Huntingdon.com

Reason(s) for Change(s)

Keith P. Hazelden was responsible for the conduct of the study and submission of the draft report although is no longer employed with Huntingdon Life Sciences. Gary Hoffman will assume Study Director responsibility for finalization of the report. Robert M. Parker will be Alternate Contact (x2389) and will provide reproductive toxicology consultation.

Amendment approved by:

Gary M. Hoffman, BA, DABT Study Director

omas M. Gray, MS, DABT

Sponsor Representative

Date

BCra

1. Carlos a travela	·
05-4287	Page 31
211-DIPE-DEV	
	05-4287

71

Protocol Amendment No.: 4

Study Title:

Gasoline DIPE Vapor Condensate: Embryo-Fetal Toxicity Study in Rats by Inhalation Exposure

Change(s)

Statistical Evaluations, page 15:

Revise from: Analysis will be performed by Graham Healey (Principal Investigator) of Huntingdon Life Sciences Ltd, Woolley Road, Alconbury, Huntingdon, Cambridgeshire, PE28 4HS, England. The Testing Facility will be responsible for the GLP compliance and the archiving of the raw data and original final report.

Revise to: Analysis will be initially performed by Graham Healey (Principal Investigator) of Huntingdon Life Sciences Ltd, Woolley Road, Alconbury, Huntingdon, Cambridgeshire, PE28 4HS, England. The Testing Facility will be responsible for the GLP compliance and the archiving of the raw data and original final report. Further statistical analysis (gravid uterus weight and net body weight change minus gravid uterine weight) will be performed by Gareth Thomas (Principal Investigator) and expert report prepared for Testing Facility auditing. This additional phase of the study will also be conducted in compliance with principles of Good Laboratory Practice Standards as set forth in: The UK Good Laboratory Practice Regulations (Statutory Instrument 1999 No 3106 as amended by Statutory Instrument 2004 No. 994). OECD Principles of Good Laboratory Practice (as revised in 1997), ENV/MC/CHEM(98)17. EC Commission Directive 2004/10/EC of 11 February 2004 (Official Journal No L 50/44). Test Site-UK QA will audit the study protocol and any subsequent protocol amendments pertaining to the statistical phase of work conducted by the Principal Investigator. The dates of inspection will be specified on the OA Statement of the final report. The SAS 9.1.3 [SAS INSTITUTE (2002) SAS OnlineDoc⁰ Version Nine. SAS Institute Inc., Cary, NC, USA.] or Quasar 1.1. [QUASAR 1.1 User Guide (Stand-Alone) version 1.1 (2009). Huntingdon Life Sciences Internal Document.] computer system will be used for the statistical analysis.

Reason(s) for Change(s)

Graham Healey has retired from HLS and this study was reassigned to Gareth Thomas to assume the responsibilities of Principal Investigator that had belonged to Graham Healey. Also, added clarification of the GLP regulations, auditing and computer systems relevant to the statistical evaluations.

Huntingdon Life Sciences

05-4287 211-DIPE-DEV

Page 32

Protocol Amendment No.: 4

Amendment approved by:

Gary M. Hoffman, BA, DABT Study Director

Thomas M. Gray, MS, DABP Sponsor Representative

<u>Z</u>4nn_ll Date

May 23,0 <u>?0]]</u>} Date

Huntingdon Life Sciences	05-4287	Page 33
	211-DIPE-DEV	

Study Title:Gasoline DIPE Vapor Condensate:
Embryo-Fetal Toxicity Study in Rats by Inhalation Exposure

Change(s)

Statistical Evaluations, page 15:

CONTINUOUS DATA

The following mean measures will be analyzed as described below:

maternal body weight values and body weight changes during gestation (Note: body weight measurements will only be compared to GD 5 values or subsequent relevant values)

maternal feed consumption values (presented as grams of feed/kg of body weight/day)

gravid uterine weights

corpora lutea

implantation data

pre-implantation loss

early embryonic deaths (evidence of implantation but no recognizable fetus)

live fetuses

dead fetuses (no significant degeneration)

late embryo-fetal deaths (recognizable dead fetus undergoing degeneration, regardless of size)

total embryo-fetal deaths and as % of implant sites

number of males and females per litter

Mean values of all exposure groups will be compared to the mean value for the control group at each time interval. Evaluation of equality of group means will be made by the appropriate statistical method (either parametric or non-parametric methods), followed by a multiple comparison test if needed. Bartlett's test (Bartlett, 1937; Sokal and Rohlf, 1995; Snedecor and Cochran, 1967) will be performed to determine if groups have equal variances. For all parameters if the variances are equal, parametric procedures will be used; if not, nonparametric procedures will be used.

The parametric method will be the standard one-way analysis of variance (ANOVA) using the F ratio to assess significance (Armitage, **Berry and Matthews 2002** 1971; Dunlap and Duffy, 1975). If significant differences among the means are indicated Dunnett's (Dunlap et al., 1981; Dunnett, 1955, 1964) test will be used to determine

Huntingdon Life Sciences	05-4287	Page 34
	211-DIPE-DEV	

which means are significantly different from the control. The nonparametric method will be the Kruskal-Wallis test (Kruskal and Wallis, 1952, 1953) and if differences are indicated, Steel's test (Steel, 1959) will be used to determine which means differ from control. Bartlett's test for equality of variance will be conducted at the 1% significance level; all other statistical tests will be conducted at the 5% and 1% significance levels.

References for these procedures are:

Armitage, P., Berry, G. and Matthews, J.N.S. (2002) *Statistical Methods in Medical Research*, 4th edition. Blackwell Science, Oxford, UK, pp 208-215.

Armitage, P. 1971. Statistical Methods in Medical Research. Oxford, UK: Blackwell Scientific Publications.

Bartlett, M.S. 1937. Properties of sufficiency and statistical tests. Proceedings of the Royal Society, Series A 160:268-282.

Dunlap, W.P. and Duffy, J.A. 1975. Fortran IV functions for calculating exact probabilities associated with z, chi Square, t and F Values. Behav. Res. Methods and Instrumentations 7:59-60.

Dunlap, W.P., Marx, M.S. and Agamy, G.G. 1981. Fortran IV functions for calculating probabilities associated with Dunnett's test. Behav. Res. Methods and Instrumentation 13: 363-366.

Dunnett, C.W. 1955. A multiple comparison procedure for comparing several treatments with a control. Journal of the American Statistical Association 50: 1096-1121.

Dunnett, C.W. 1964. New tables for multiple comparisons with a control. Biometrics 20: 482-491.

Kruskal, W.H. and Wallis, W.A. 1952. Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association 47: 583-621.

Kruskal, W.H. and Wallis, W.A. 1953. Errata for Kruskal-Wallis (1952) Journal of the American Statistical Association 48: 907-911.

Snedecor, G.W. and Cochran, W.G. (1989) Statistical Methods. 8th edition Iowa State University Press, Iowa, USA.

Sokal, R.R. and Rohlf, F.J. 1995. Biometry. 3rd Edition. San Francisco: W.H. Freeman, pp. 369 371.

Steel, R.G.D. 1959. A multiple comparison rank sum test: treatment versus control. Biometrics 15: 560-572.

Huntingdon Life Sciences	05-4287	Page 35
	211-DIPE-DEV	

FETAL BODY WEIGHT

The fetal body weight (by sex and as a composite for both sexes) will be analyzed by a mixed model analysis of variance (**Proc Mixed, SAS Institute 1999**) that provides an accurate statistical model of the biology. The analysis uses the litter as the basis for analysis and effectively uses the litter size as a covariate. The model considers dose group, litter size, and fetal sex as explanatory variables **and will include a random animal effect.** The Satterthwaite method will be used for the fixed effects denominator degrees of freedom. If the dose group effect in the model is statistically significant, the dose group least squares means will be tested pairwise vs compared with the control group using t tests associated with least squares means Dunnett's test with the means being adjusted for the litter size. The least squares means allows comparisons that account for differences in litter size and sex. The mathematical model is based on a paper by Chen et. al. (1996). Statistical significance of differences from control will be recognized at the 5% or 1%, two-sided levels.

Reference:

Chen, J.J., Gaylor, D.W. and Laborde, J.B. 1996. Dose response modeling of growth for developmental toxicity. Environmetrics 7:135-144.

SAS INSTITUTE (1999) SAS OnlineDoc® Version Eight. SAS Institute Inc., Cary, NC, USA.

INCIDENCE DATA

premature deliveries

total pregnancy loss (no live fetuses)

maternal necropsy findings

external fetal defects

skeletal malformations and variations

soft tissue malformations and variations

For maternal parameters:

These parameters will be analyzed using non-parametric methods. If the dose group effect is statistically significant, each dose group will be compared with the control group using pairwise Wilcoxon rank sum tests (Wilcoxon 1945).

For fetal findings:

Huntingdon Life Sciences	05-4287	Page 36
	211-DIPE-DEV	

These data will be analyzed based on a Generalized Estimating Equation (GEE) application of the linearized model (Ryan, 1992 Proc Genmod, SAS Institute 1999). For litter endpoints, the model uses the litter as the basis for analysis and considers correlation among littermates by incorporating an estimated constant correlation and the litter size as a covariate. If the dose group effect in the model is statistically significant, significantly the dose group least squares means will be tested pairwise vs. the control group using t-tests associated with least squares means. The least squares means allows comparisons that account for differences in litter size. Statistical significance of differences from control will be recognized at the 5% or 1%, two-sided levels. If this method does not converge, then non-parametric methods will be applied. The Kruskal-Wallis test (Kruskal and Wallis 1952, 1953) will be applied. If this is significant at the 5% level then each treatment group will be compared with the control using Wilcoxon rank sum tests (Wilcoxon 1945).

References:

SAS INSTITUTE (1999) SAS OnlineDoc® Version Eight. SAS Institute Inc., Cary, NC, USA

Ryan, L. 1992. The use of generalized estimating equations for risk assessment in developmental toxicity. Risk Analysis, 12:439-447.

Wilcoxon, F. (1945) Individual comparisons by ranking methods. Biometrics Bulletin, 1, 80-83.

Reason(s) for Change(s)

Added clarifications and corrections of the statistical evaluations as conducted by HLS UK Statistics Department.

Amendment approved by:

Gary M. Hoffman, BA, DABT Study Director

Thomas M. Gray, MS, DABT Sponsor Representative

2 Marizon

Date

Date

Huntingdon Life Sciences	fe Sciences 05-4287 211-DIPE-DEV	
	Historical Control Data	
	Fetal Skeletal Observations	Appendix P

Rat Strain: Sprague-Dawley [Crl: CD IGS BR] Supplier: Charles River Laboratories

Fetal Variation: Rib(s) 14th Rudimentary

				Fetuses			Litters		
				No.	No. with	% with	No.	No. with	% with
Study	Route	1st GD 6	Last GD 20	Examined	Finding	Finding	Examined	Finding	Finding
ALL		Sep-02	Jul-05	902	79	8.76	134	45	33.58
02-4235	Oral gavage	Sep-02	Oct-02	160	11	6.88	22	6	27.27
03-4253	Inhalation	Feb-05	Mar-05	167	12	7.19	24	7	29.17
03-4255	Oral gavage	Jun-03	Sep-03	148	23	15.54	22	15	68.18
04-4261	Inhalation	Aug-04	Sep-04	150	22	14.67	22	9	40.91
04-4267	Subcutaneous	Nov-04	Dec-04	135	6	4.44	22	4	18.18
05-4292	Intravenous	Jun-05	Jul-05	142	5	3.52	22	4	18.18

Reproductive Toxicology

Historical Control Data in Rats

905 Sheehy Drive, Bldg. A, Horsham, PA 19044 • 215.443.8710 • FAX 215.443.8587

CHARLES RIVER LABORATORIES, PRECLINICAL SERVICES, PENNSYLVANIA SUMMARY OF REPRODUCTIVE INDICES Cri:CD(SD) RATS DAY 21 CAESAREAN-SECTION

PERIOD: JUNE 2008 - JUNE 2010

	FULL STUDIES	DOSAGE-RANGE STUDIES
NUMBER OF STUDIES	48	11
NUMBER OF RATS:		
TESTED	1195	86
PREGNANT	1106	79
FOUND DEAD	7*	1
ABORTED	1	0
DELIVERED	13	0
NUMBER OF RATS PREGNANT AT		
CAESAREAN-SECTIONING	1089	78
NUMBER OF RATS WITH SINGLE CONCEPTUS LITTER:		
LIVE	1	0
RESORBED	0	0
ABORTED	0	0

	MEAN or %	RANGE/STUDY <u>MEAN or %</u>	H MEAN or %	RANGE/STUDY <u>MEAN or %</u>
% PREGNANT	92.9	(76.0-100)	93.6	(62.5-100)
AVERAGE NO. CORPORA LUTEA	15.8	(13.6-17.9)	15.6	(14.0-16.5)
AVERAGE NO. IMPLANTATIONS	14.8	(13.0-17.0)	14.5	(13.3-15.5)
AVERAGE % PREIMPLANTATION LOSS	5.4	(1.8-11.3)	5.1	(3.0-10.2)
AVERAGE LITTER SIZE				
AVERAGE NO. LIVE FETUSES	14.1	(12.5-16.1)	14.0	(12.8-15.2)
AVERAGE NO. DEAD FETUSES	0.0		0.0	
AVERAGE NO. RESORPTIONS	0.7	(0.3-1.2)	0.6	(0.1-1.0)
AVERAGE NO. EARLY RESORPTION	S 0.7	(0.3-1.2)	0.6	(0.1-1.0)
AVERAGE NO. LATE RESORPTIONS	0.0		0.0	(0-0.2)

* Two were unscheduled sacrifices and one was euthanized due to an intubation accident

CHARLES RIVER LABORATORIES, PRECLINICAL SERVICES, PENNSYLVANIA SUMMARY OF REPRODUCTIVE INDICES CrI:CD(SD) RATS DAY 21 CAESAREAN-SECTION

	FUI STUD		DOSAGE-RANGE STUDIES	
	MEAN or %	RANGE/STUDY <u>MEAN or %</u>	R <u>MEAN or %</u>	ANGE/STUDY <u>MEAN or %</u>
AVERAGE % POSTIMPLANTATION LOSS	4.7	(2.1-8.8)	4.6	(1.4-7.4)
AVERAGE % DAMS WITH ANY RESORPTIONS	46.1	(24.0-75.0)	44.9	(12.5-80.0)
AVERAGE % DAMS WITH ALL CONCEPTUSES RESORBED	0.0		0.0	
AVERAGE % DAMS WITH ONE OR MORE LIVE FETUSES	100.0		100.0	
AVERAGE SEX RATIO (% MALES/LITTER)	49.8	(42.6-55.9)	49.3	(42.0-55.4)
AVERAGE FETAL BODY WEIGHT (G) 5.47	(5.16-5.75)	5.39	(5.04-5.65)
AVERAGE FOR MALES (G)	5.61	(5.27-5.91)	5.53	(5.19-5.86)
AVERAGE FOR FEMALES (G)	5.32	(4.97-5.57)	5.25	(4.92-5.52)
AVERAGE % DEAD OR RESORBED CONCEPTUSES/LITTER	4.8	(2.1-8.8)	4.2	(1.2-7.4)

	Testing Facility Personnel		Appendix Q	
TITLE/DEPARTMENT		NAME/DE	NAME/DEGREE	
SENIOR VICE PRESIDENT, SAFETY ASSESSMENT		Sylvie J. Gosselin, D.V.M Diplomate A.C.V.P.	Sylvie J. Gosselin, D.V.M., Ph.D., Diplomate A.C.V.P.	
DIRECTOR, TOXICOLOGY OPERATIONS		Ian Vanterpool, F.I.A.T.	Ian Vanterpool, F.I.A.T.	
DIRECTOR, QUALITY ASSURANCE		Nicki S. Iacono, B.S.	Nicki S. Iacono, B.S.	
STUDY DIRECTOR ^a			Keith P. Hazelden, B.Sc., C.Biol., M.I.Biol. Gary M. Hoffman, B.A., D.A.B.T.	
INHALATION TOXICOLOGIST		Gary M. Hoffman, B.A., I	Gary M. Hoffman, B.A., D.A.B.T.	
VETERINARIAN		Teresa S. Kusznir, V.M.D	Teresa S. Kusznir, V.M.D.	
REPORT PRODUCTION		Janet E. Scimone, B.A.	Janet E. Scimone, B.A.	
MANAGER/SUPERVISOR				
Reproductive Toxicology Inhalation Toxicology Analytical Services Pharmacy Necropsy and Fetal Pathology		Sally Wilcox, B.Sc. Stuart Cracknell, CBiol, M Yonggang Wang, M.A. Michael S. McCarthy G. Elizabeth Baxter, B.S.	Stuart Cracknell, CBiol, MIBiol. Yonggang Wang, M.A. Michael S. McCarthy	
STATISTICIAN		Gareth D. Thomas, B.Sc. (H Principal Investigator	Gareth D. Thomas, B.Sc. (Hons). Principal Investigator	
SUBCONTRACTOR		Michael Mercieca, Princip Pathology Associates Inte	•	

^aKeith Hazeldon was responsible for the conduct of the study and submission of the draft report; however he is no longer employed with Huntingdon Life Sciences. Gary Hoffman assumes responsibility for finalization of the study report.

Huntingdon Life Sciences

05-4287 211-DIPE-DEV Page 218 Final Report

Huntingdon Life Sciences	05-4287 211-DIPE-DEV	Page 219 Final Report
	Report Amendments	Appendix R

There are no amendments for this report at this time.